# Environmental Insights
[](https://pypi.org/project/environmental-insights)
[](https://github.com/liamjberrisford/Environmental-Insights/releases)
[](https://github.com/liamjberrisford/Environmental-Insights/actions)
[](https://github.com/liamjberrisford/Environmental-Insights/actions/workflows/testing.yml)
A Python package for democratizing access to ambient air pollution data and predictive analytics.
---
## 📖 Description
**Environmental Insights** provides easy-to-use functions to download, process, and analyze ambient air pollution and meteorological data over England.
- Implements supervised machine-learning pipelines to predict hourly pollutant concentrations on a 1 km² grid.
- Supplies both “typical day” aggregates (percentiles) and full hourly model outputs.
- Includes geospatial utilities for mapping, interpolation, and uncertainty analysis.
---
## ⚙️ Installation
Install from PyPI:
```bash
pip install environmental-insights
```
Or from source:
```bash
git clone https://github.com/liamjberrisford/Environmental-Insights.git
cd Environmental-Insights
python -m build
pip install dist/environmental_insights-0.2.1b0-py3-none-any.whl
```
---
## 📂 Data Sources
This package downloads and processes two primary CEDA datasets:
1. **Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE)**
Berrisford, L. (2025). *Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE).* NERC EDS Centre for Environmental Data Analysis.
DOI: [10.5285/4cbd9c53ab07497ba42de5043d1f414b](https://dx.doi.org/10.5285/4cbd9c53ab07497ba42de5043d1f414b)
> Representative “typical day” profiles of NO₂, NO, NOₓ, O₃, PM₁₀, PM₂.₅ and SO₂ on a 1 km² grid, with 5th, 50th & 95th percentiles.
2. **Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE)**
Berrisford, L. (2025). *Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE).* NERC EDS Centre for Environmental Data Analysis.
DOI: [10.5285/fc735f9878ed43e293b85f85e40df24d](https://dx.doi.org/10.5285/fc735f9878ed43e293b85f85e40df24d)
> Full-year (2018) hourly modelled concentrations of NO₂, NO, NOₓ, O₃, PM₁₀, PM₂.₅ and SO₂ on a 1 km² grid, including 5th, 50th & 95th percentiles and underlying training data.
---
For full examples, see the Jupyter-Book tutorial in `book/tutorial_environmental_insights.ipynb`.
## 📚 Documentation
Build and view locally:
```bash
jupyter-book build book/
```
Then open `book/_build/html/index.html` in your browser.
Highlights:
- **API Reference**: `book/docs/api/environmental_insights/`
- **Tutorial Notebook**: `book/tutorial_environmental_insights.ipynb`
The documentation is also avaiable via the [GitHub Pages Site](https://liamjberrisford.github.io/Environmental-Insights/home_page.html)
---
## ✅ Testing
Run the full test suite:
```bash
pytest
```
Integration and unit tests are under `tests/`.
---
## 🤝 Contributing
Contributions and bug-reports are very welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details on:
- Code style
- Pull request process
- Issue reporting
---
## 📑 Citation
If you use *Environmental Insights* in your work, please cite:
> Berrisford, L. J. (2025). Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics (Version 0.2.1b0) [Software]. GitHub. https://github.com/liamjberrisford/Environmental-Insights
Also cite the underlying datasets:
- Berrisford, L. (2025). *SynthHAPPE*: Synthetic Hourly Air Pollution Prediction Averages for England. NERC EDS CEDA. DOI: 10.5285/4cbd9c53ab07497ba42de5043d1f414b
- Berrisford, L. (2025). *ML-HAPPE*: Machine Learning for Hourly Air Pollution Prediction in England. NERC EDS CEDA. DOI: 10.5285/fc735f9878ed43e293b85f85e40df24d
---
## 📜 License
This project is released under the [GPL-3.0-or-later](LICENSE).
Raw data
{
"_id": null,
"home_page": null,
"name": "environmental-insights",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.10",
"maintainer_email": null,
"keywords": "air pollution, predictive analytics, environmental data, geospatial analysis",
"author": "Liam J. Berrisford",
"author_email": "l.berrisford3@exeter.ac.uk",
"download_url": "https://files.pythonhosted.org/packages/d5/cb/60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc/environmental_insights-0.3.0.tar.gz",
"platform": null,
"description": "# Environmental Insights\n\n[](https://pypi.org/project/environmental-insights)\n[](https://github.com/liamjberrisford/Environmental-Insights/releases)\n[](https://github.com/liamjberrisford/Environmental-Insights/actions)\n[](https://github.com/liamjberrisford/Environmental-Insights/actions/workflows/testing.yml)\n\n\n\nA Python package for democratizing access to ambient air pollution data and predictive analytics.\n\n---\n\n## \ud83d\udcd6 Description\n\n**Environmental Insights** provides easy-to-use functions to download, process, and analyze ambient air pollution and meteorological data over England. \n- Implements supervised machine-learning pipelines to predict hourly pollutant concentrations on a 1 km\u00b2 grid. \n- Supplies both \u201ctypical day\u201d aggregates (percentiles) and full hourly model outputs. \n- Includes geospatial utilities for mapping, interpolation, and uncertainty analysis.\n\n---\n\n## \u2699\ufe0f Installation\n\nInstall from PyPI:\n\n```bash\npip install environmental-insights\n```\n\nOr from source:\n\n```bash\ngit clone https://github.com/liamjberrisford/Environmental-Insights.git\ncd Environmental-Insights\npython -m build\npip install dist/environmental_insights-0.2.1b0-py3-none-any.whl\n```\n\n---\n\n## \ud83d\udcc2 Data Sources\n\nThis package downloads and processes two primary CEDA datasets:\n\n1. **Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE)** \n Berrisford, L. (2025). *Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE).* NERC EDS Centre for Environmental Data Analysis. \n DOI: [10.5285/4cbd9c53ab07497ba42de5043d1f414b](https://dx.doi.org/10.5285/4cbd9c53ab07497ba42de5043d1f414b) \n > Representative \u201ctypical day\u201d profiles of NO\u2082, NO, NO\u2093, O\u2083, PM\u2081\u2080, PM\u2082.\u2085 and SO\u2082 on a 1 km\u00b2 grid, with 5th, 50th & 95th percentiles.\n\n2. **Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE)** \n Berrisford, L. (2025). *Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE).* NERC EDS Centre for Environmental Data Analysis. \n DOI: [10.5285/fc735f9878ed43e293b85f85e40df24d](https://dx.doi.org/10.5285/fc735f9878ed43e293b85f85e40df24d) \n > Full-year (2018) hourly modelled concentrations of NO\u2082, NO, NO\u2093, O\u2083, PM\u2081\u2080, PM\u2082.\u2085 and SO\u2082 on a 1 km\u00b2 grid, including 5th, 50th & 95th percentiles and underlying training data.\n\n---\n\nFor full examples, see the Jupyter-Book tutorial in `book/tutorial_environmental_insights.ipynb`.\n\n## \ud83d\udcda Documentation\n\nBuild and view locally:\n\n```bash\njupyter-book build book/\n```\n\nThen open `book/_build/html/index.html` in your browser. \nHighlights:\n\n- **API Reference**: `book/docs/api/environmental_insights/` \n- **Tutorial Notebook**: `book/tutorial_environmental_insights.ipynb`\n\nThe documentation is also avaiable via the [GitHub Pages Site](https://liamjberrisford.github.io/Environmental-Insights/home_page.html)\n\n---\n\n## \u2705 Testing\n\nRun the full test suite:\n\n```bash\npytest\n```\n\nIntegration and unit tests are under `tests/`.\n\n---\n\n## \ud83e\udd1d Contributing\n\nContributions and bug-reports are very welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details on:\n\n- Code style \n- Pull request process \n- Issue reporting \n\n---\n\n## \ud83d\udcd1 Citation\n\nIf you use *Environmental Insights* in your work, please cite:\n\n> Berrisford, L. J. (2025). Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics (Version 0.2.1b0) [Software]. GitHub. https://github.com/liamjberrisford/Environmental-Insights \n\nAlso cite the underlying datasets:\n\n- Berrisford, L. (2025). *SynthHAPPE*: Synthetic Hourly Air Pollution Prediction Averages for England. NERC EDS CEDA. DOI: 10.5285/4cbd9c53ab07497ba42de5043d1f414b \n- Berrisford, L. (2025). *ML-HAPPE*: Machine Learning for Hourly Air Pollution Prediction in England. NERC EDS CEDA. DOI: 10.5285/fc735f9878ed43e293b85f85e40df24d \n\n---\n\n## \ud83d\udcdc License\n\nThis project is released under the [GPL-3.0-or-later](LICENSE). \n\n",
"bugtrack_url": null,
"license": "GPL-3.0-or-later",
"summary": "A Python package for democratizing access to ambient air pollution data and predictive analytics.",
"version": "0.3.0",
"project_urls": null,
"split_keywords": [
"air pollution",
" predictive analytics",
" environmental data",
" geospatial analysis"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "040ed8aca887ca296b657b85d48b9779cab4299b582ec5b404099026a8677fe1",
"md5": "2463d9ed5f5dc96981a77a36309cb1e4",
"sha256": "20035df1ccef743a683e3c3c33715c605adcbaeb9b8b729ac6efdae9f01ec178"
},
"downloads": -1,
"filename": "environmental_insights-0.3.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "2463d9ed5f5dc96981a77a36309cb1e4",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.10",
"size": 24136731,
"upload_time": "2025-08-12T08:29:45",
"upload_time_iso_8601": "2025-08-12T08:29:45.498323Z",
"url": "https://files.pythonhosted.org/packages/04/0e/d8aca887ca296b657b85d48b9779cab4299b582ec5b404099026a8677fe1/environmental_insights-0.3.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d5cb60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc",
"md5": "2cf5d6842092710458294d42d74b9906",
"sha256": "b54b985bfad17bfa74650b5c2060a6ccd3355f5a8bb3f228ce1b8f7ba979a887"
},
"downloads": -1,
"filename": "environmental_insights-0.3.0.tar.gz",
"has_sig": false,
"md5_digest": "2cf5d6842092710458294d42d74b9906",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.10",
"size": 24261713,
"upload_time": "2025-08-12T08:29:47",
"upload_time_iso_8601": "2025-08-12T08:29:47.651818Z",
"url": "https://files.pythonhosted.org/packages/d5/cb/60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc/environmental_insights-0.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-12 08:29:47",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "environmental-insights"
}