environmental-insights


Nameenvironmental-insights JSON
Version 0.3.0 PyPI version JSON
download
home_pageNone
SummaryA Python package for democratizing access to ambient air pollution data and predictive analytics.
upload_time2025-08-12 08:29:47
maintainerNone
docs_urlNone
authorLiam J. Berrisford
requires_python<4.0,>=3.10
licenseGPL-3.0-or-later
keywords air pollution predictive analytics environmental data geospatial analysis
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Environmental Insights

[![PyPI version](https://img.shields.io/pypi/v/environmental-insights.svg?cacheSeconds=3600)](https://pypi.org/project/environmental-insights)
[![GitHub release](https://img.shields.io/github/v/release/liamjberrisford/Environmental-Insights.svg?sort=semver&cacheSeconds=3600)](https://github.com/liamjberrisford/Environmental-Insights/releases)
[![Build status](https://img.shields.io/github/actions/workflow/status/liamjberrisford/Environmental-Insights/release.yml?branch=main&cacheSeconds=3600)](https://github.com/liamjberrisford/Environmental-Insights/actions)
[![Tests](https://img.shields.io/github/actions/workflow/status/liamjberrisford/Environmental-Insights/testing.yml?branch=main&label=tests&style=flat-square)](https://github.com/liamjberrisford/Environmental-Insights/actions/workflows/testing.yml)



A Python package for democratizing access to ambient air pollution data and predictive analytics.

---

## 📖 Description

**Environmental Insights** provides easy-to-use functions to download, process, and analyze ambient air pollution and meteorological data over England.  
- Implements supervised machine-learning pipelines to predict hourly pollutant concentrations on a 1 km² grid.  
- Supplies both “typical day” aggregates (percentiles) and full hourly model outputs.  
- Includes geospatial utilities for mapping, interpolation, and uncertainty analysis.

---

## ⚙️ Installation

Install from PyPI:

```bash
pip install environmental-insights
```

Or from source:

```bash
git clone https://github.com/liamjberrisford/Environmental-Insights.git
cd Environmental-Insights
python -m build
pip install dist/environmental_insights-0.2.1b0-py3-none-any.whl
```

---

## 📂 Data Sources

This package downloads and processes two primary CEDA datasets:

1. **Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE)**  
   Berrisford, L. (2025). *Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE).* NERC EDS Centre for Environmental Data Analysis.  
   DOI: [10.5285/4cbd9c53ab07497ba42de5043d1f414b](https://dx.doi.org/10.5285/4cbd9c53ab07497ba42de5043d1f414b)  
   > Representative “typical day” profiles of NO₂, NO, NOₓ, O₃, PM₁₀, PM₂.₅ and SO₂ on a 1 km² grid, with 5th, 50th & 95th percentiles.

2. **Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE)**  
   Berrisford, L. (2025). *Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE).* NERC EDS Centre for Environmental Data Analysis.  
   DOI: [10.5285/fc735f9878ed43e293b85f85e40df24d](https://dx.doi.org/10.5285/fc735f9878ed43e293b85f85e40df24d)  
   > Full-year (2018) hourly modelled concentrations of NO₂, NO, NOₓ, O₃, PM₁₀, PM₂.₅ and SO₂ on a 1 km² grid, including 5th, 50th & 95th percentiles and underlying training data.

---

For full examples, see the Jupyter-Book tutorial in `book/tutorial_environmental_insights.ipynb`.

## 📚 Documentation

Build and view locally:

```bash
jupyter-book build book/
```

Then open `book/_build/html/index.html` in your browser.  
Highlights:

- **API Reference**: `book/docs/api/environmental_insights/`  
- **Tutorial Notebook**: `book/tutorial_environmental_insights.ipynb`

The documentation is also avaiable via the [GitHub Pages Site](https://liamjberrisford.github.io/Environmental-Insights/home_page.html)

---

## ✅ Testing

Run the full test suite:

```bash
pytest
```

Integration and unit tests are under `tests/`.

---

## 🤝 Contributing

Contributions and bug-reports are very welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details on:

- Code style  
- Pull request process  
- Issue reporting  

---

## 📑 Citation

If you use *Environmental Insights* in your work, please cite:

> Berrisford, L. J. (2025). Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics (Version 0.2.1b0) [Software]. GitHub. https://github.com/liamjberrisford/Environmental-Insights  

Also cite the underlying datasets:

- Berrisford, L. (2025). *SynthHAPPE*: Synthetic Hourly Air Pollution Prediction Averages for England. NERC EDS CEDA. DOI: 10.5285/4cbd9c53ab07497ba42de5043d1f414b  
- Berrisford, L. (2025). *ML-HAPPE*: Machine Learning for Hourly Air Pollution Prediction in England. NERC EDS CEDA. DOI: 10.5285/fc735f9878ed43e293b85f85e40df24d  

---

## 📜 License

This project is released under the [GPL-3.0-or-later](LICENSE).  


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "environmental-insights",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.10",
    "maintainer_email": null,
    "keywords": "air pollution, predictive analytics, environmental data, geospatial analysis",
    "author": "Liam J. Berrisford",
    "author_email": "l.berrisford3@exeter.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/d5/cb/60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc/environmental_insights-0.3.0.tar.gz",
    "platform": null,
    "description": "# Environmental Insights\n\n[![PyPI version](https://img.shields.io/pypi/v/environmental-insights.svg?cacheSeconds=3600)](https://pypi.org/project/environmental-insights)\n[![GitHub release](https://img.shields.io/github/v/release/liamjberrisford/Environmental-Insights.svg?sort=semver&cacheSeconds=3600)](https://github.com/liamjberrisford/Environmental-Insights/releases)\n[![Build status](https://img.shields.io/github/actions/workflow/status/liamjberrisford/Environmental-Insights/release.yml?branch=main&cacheSeconds=3600)](https://github.com/liamjberrisford/Environmental-Insights/actions)\n[![Tests](https://img.shields.io/github/actions/workflow/status/liamjberrisford/Environmental-Insights/testing.yml?branch=main&label=tests&style=flat-square)](https://github.com/liamjberrisford/Environmental-Insights/actions/workflows/testing.yml)\n\n\n\nA Python package for democratizing access to ambient air pollution data and predictive analytics.\n\n---\n\n## \ud83d\udcd6 Description\n\n**Environmental Insights** provides easy-to-use functions to download, process, and analyze ambient air pollution and meteorological data over England.  \n- Implements supervised machine-learning pipelines to predict hourly pollutant concentrations on a 1 km\u00b2 grid.  \n- Supplies both \u201ctypical day\u201d aggregates (percentiles) and full hourly model outputs.  \n- Includes geospatial utilities for mapping, interpolation, and uncertainty analysis.\n\n---\n\n## \u2699\ufe0f Installation\n\nInstall from PyPI:\n\n```bash\npip install environmental-insights\n```\n\nOr from source:\n\n```bash\ngit clone https://github.com/liamjberrisford/Environmental-Insights.git\ncd Environmental-Insights\npython -m build\npip install dist/environmental_insights-0.2.1b0-py3-none-any.whl\n```\n\n---\n\n## \ud83d\udcc2 Data Sources\n\nThis package downloads and processes two primary CEDA datasets:\n\n1. **Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE)**  \n   Berrisford, L. (2025). *Synthetic Hourly Air Pollution Prediction Averages for England (SynthHAPPE).* NERC EDS Centre for Environmental Data Analysis.  \n   DOI: [10.5285/4cbd9c53ab07497ba42de5043d1f414b](https://dx.doi.org/10.5285/4cbd9c53ab07497ba42de5043d1f414b)  \n   > Representative \u201ctypical day\u201d profiles of NO\u2082, NO, NO\u2093, O\u2083, PM\u2081\u2080, PM\u2082.\u2085 and SO\u2082 on a 1 km\u00b2 grid, with 5th, 50th & 95th percentiles.\n\n2. **Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE)**  \n   Berrisford, L. (2025). *Machine Learning for Hourly Air Pollution Prediction in England (ML-HAPPE).* NERC EDS Centre for Environmental Data Analysis.  \n   DOI: [10.5285/fc735f9878ed43e293b85f85e40df24d](https://dx.doi.org/10.5285/fc735f9878ed43e293b85f85e40df24d)  \n   > Full-year (2018) hourly modelled concentrations of NO\u2082, NO, NO\u2093, O\u2083, PM\u2081\u2080, PM\u2082.\u2085 and SO\u2082 on a 1 km\u00b2 grid, including 5th, 50th & 95th percentiles and underlying training data.\n\n---\n\nFor full examples, see the Jupyter-Book tutorial in `book/tutorial_environmental_insights.ipynb`.\n\n## \ud83d\udcda Documentation\n\nBuild and view locally:\n\n```bash\njupyter-book build book/\n```\n\nThen open `book/_build/html/index.html` in your browser.  \nHighlights:\n\n- **API Reference**: `book/docs/api/environmental_insights/`  \n- **Tutorial Notebook**: `book/tutorial_environmental_insights.ipynb`\n\nThe documentation is also avaiable via the [GitHub Pages Site](https://liamjberrisford.github.io/Environmental-Insights/home_page.html)\n\n---\n\n## \u2705 Testing\n\nRun the full test suite:\n\n```bash\npytest\n```\n\nIntegration and unit tests are under `tests/`.\n\n---\n\n## \ud83e\udd1d Contributing\n\nContributions and bug-reports are very welcome! Please see [CONTRIBUTING.md](CONTRIBUTING.md) for details on:\n\n- Code style  \n- Pull request process  \n- Issue reporting  \n\n---\n\n## \ud83d\udcd1 Citation\n\nIf you use *Environmental Insights* in your work, please cite:\n\n> Berrisford, L. J. (2025). Environmental Insights: Democratizing access to ambient air pollution data and predictive analytics (Version 0.2.1b0) [Software]. GitHub. https://github.com/liamjberrisford/Environmental-Insights  \n\nAlso cite the underlying datasets:\n\n- Berrisford, L. (2025). *SynthHAPPE*: Synthetic Hourly Air Pollution Prediction Averages for England. NERC EDS CEDA. DOI: 10.5285/4cbd9c53ab07497ba42de5043d1f414b  \n- Berrisford, L. (2025). *ML-HAPPE*: Machine Learning for Hourly Air Pollution Prediction in England. NERC EDS CEDA. DOI: 10.5285/fc735f9878ed43e293b85f85e40df24d  \n\n---\n\n## \ud83d\udcdc License\n\nThis project is released under the [GPL-3.0-or-later](LICENSE).  \n\n",
    "bugtrack_url": null,
    "license": "GPL-3.0-or-later",
    "summary": "A Python package for democratizing access to ambient air pollution data and predictive analytics.",
    "version": "0.3.0",
    "project_urls": null,
    "split_keywords": [
        "air pollution",
        " predictive analytics",
        " environmental data",
        " geospatial analysis"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "040ed8aca887ca296b657b85d48b9779cab4299b582ec5b404099026a8677fe1",
                "md5": "2463d9ed5f5dc96981a77a36309cb1e4",
                "sha256": "20035df1ccef743a683e3c3c33715c605adcbaeb9b8b729ac6efdae9f01ec178"
            },
            "downloads": -1,
            "filename": "environmental_insights-0.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2463d9ed5f5dc96981a77a36309cb1e4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.10",
            "size": 24136731,
            "upload_time": "2025-08-12T08:29:45",
            "upload_time_iso_8601": "2025-08-12T08:29:45.498323Z",
            "url": "https://files.pythonhosted.org/packages/04/0e/d8aca887ca296b657b85d48b9779cab4299b582ec5b404099026a8677fe1/environmental_insights-0.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d5cb60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc",
                "md5": "2cf5d6842092710458294d42d74b9906",
                "sha256": "b54b985bfad17bfa74650b5c2060a6ccd3355f5a8bb3f228ce1b8f7ba979a887"
            },
            "downloads": -1,
            "filename": "environmental_insights-0.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2cf5d6842092710458294d42d74b9906",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.10",
            "size": 24261713,
            "upload_time": "2025-08-12T08:29:47",
            "upload_time_iso_8601": "2025-08-12T08:29:47.651818Z",
            "url": "https://files.pythonhosted.org/packages/d5/cb/60863c27a9f6109cbbf6a9178892342e3f2609edbc6feb441c895ef7cdcc/environmental_insights-0.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-12 08:29:47",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "environmental-insights"
}
        
Elapsed time: 9.45011s