enzeptional


Nameenzeptional JSON
Version 1.0.4 PyPI version JSON
download
home_pageNone
SummaryEnzeptional stand-alone python package.
upload_time2024-10-24 12:00:12
maintainerNone
docs_urlNone
authorGT4SD team
requires_pythonNone
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Enzyme Optimization of Biocatalytic Reactions

This repository provides an example on how ro run the framework for the optimization of enzymes within the context of biocatalytic reactions.


### Development setup & installation

Create any virtual or conda environment compatible with the specs in setup.cfg. Then run:
```sh
pip install -e ".[dev]" 
```


### Running the example

To run the example simply type:

```sh
python example_enzeptional.py
```


### References

If you use `Enzeptional` in your projects, please consider citing the following:

```bibtex
@inproceedings{teukam2023enzyme,
  title={Enzyme optimization via a generative language modeling-based evolutionary algorithm},
  author={Teukam, Yves Gaetan Nana and Grisoni, Francesca and Manica, Matteo and Zipoli, Federico and Laino, Teodoro},
  booktitle={American Chemical Society (ACS) Spring Meeting},
  year={2023}
}
```

### License

The `Enzeptional` codebase is under MIT license.
For individual model usage, please refer to the model licenses found in the original packages.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "enzeptional",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "GT4SD team",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/4d/4a/4d6fd6c24bebf75b797aea2b07c7023fa92fdc764d796ff7a176c535b35e/enzeptional-1.0.4.tar.gz",
    "platform": null,
    "description": "# Enzyme Optimization of Biocatalytic Reactions\n\nThis repository provides an example on how ro run the framework for the optimization of enzymes within the context of biocatalytic reactions.\n\n\n### Development setup & installation\n\nCreate any virtual or conda environment compatible with the specs in setup.cfg. Then run:\n```sh\npip install -e \".[dev]\" \n```\n\n\n### Running the example\n\nTo run the example simply type:\n\n```sh\npython example_enzeptional.py\n```\n\n\n### References\n\nIf you use `Enzeptional` in your projects, please consider citing the following:\n\n```bibtex\n@inproceedings{teukam2023enzyme,\n  title={Enzyme optimization via a generative language modeling-based evolutionary algorithm},\n  author={Teukam, Yves Gaetan Nana and Grisoni, Francesca and Manica, Matteo and Zipoli, Federico and Laino, Teodoro},\n  booktitle={American Chemical Society (ACS) Spring Meeting},\n  year={2023}\n}\n```\n\n### License\n\nThe `Enzeptional` codebase is under MIT license.\nFor individual model usage, please refer to the model licenses found in the original packages.\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Enzeptional stand-alone python package.",
    "version": "1.0.4",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d91a8d35485122d499fadcf8c87cbdcd8c9836cafad130c60f5fd651b4855bca",
                "md5": "7a0631d836344c84739698cb4db34042",
                "sha256": "65ce25f54f64f725a0e5f66e2155851a26e546dff53b7771494c1e6daa1a2f04"
            },
            "downloads": -1,
            "filename": "enzeptional-1.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7a0631d836344c84739698cb4db34042",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 581023,
            "upload_time": "2024-10-24T12:00:11",
            "upload_time_iso_8601": "2024-10-24T12:00:11.310218Z",
            "url": "https://files.pythonhosted.org/packages/d9/1a/8d35485122d499fadcf8c87cbdcd8c9836cafad130c60f5fd651b4855bca/enzeptional-1.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4d4a4d6fd6c24bebf75b797aea2b07c7023fa92fdc764d796ff7a176c535b35e",
                "md5": "68ccfc9439d40acb5da5032dfc42be67",
                "sha256": "152d0a4949b4557259f1970f49dea0cea4a39028320ad1a60010aa61d1d8ce29"
            },
            "downloads": -1,
            "filename": "enzeptional-1.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "68ccfc9439d40acb5da5032dfc42be67",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 572080,
            "upload_time": "2024-10-24T12:00:12",
            "upload_time_iso_8601": "2024-10-24T12:00:12.581526Z",
            "url": "https://files.pythonhosted.org/packages/4d/4a/4d6fd6c24bebf75b797aea2b07c7023fa92fdc764d796ff7a176c535b35e/enzeptional-1.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-24 12:00:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "enzeptional"
}
        
Elapsed time: 1.22875s