enzyme-filtering-pipeline


Nameenzyme-filtering-pipeline JSON
Version 0.0.41 PyPI version JSON
download
home_pagehttps://github.com/HelenSchmid/EnzymeStructuralFiltering
SummaryNone
upload_time2025-08-03 01:06:18
maintainerNone
docs_urlNone
authorHelen Schmid
requires_python>=3.6
licenseGPL3
keywords util
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EnzymeStructuralFiltering

Structural filtering pipeline using docking and active site heuristics to prioritze ML-predicted enzyme variants for experimental validation. 
This tool processes superimposed ligand poses and filters them using geometric criteria such as distances, angles, and optionally, esterase-specific filters or nucleophilic proximity.

---

## 🚀 Features

- Parse and apply SMARTS patterns to ligand structures.
- Filter poses based on geometric constraints.
- Optional esterase or nucleophile-focused analysis.
- Supports CSV and pickle-based data pipelines.

---

## 📦 Installation

### Option 1: Install via pip
```bash
pip install XXXX
```
### Option 2: Clone the repository
```bash
git clone https://github.com/HelenSchmid/EnzymeStructuralFiltering.git
cd EnzymeStructuralFiltering
pip install .
```

## :seedling: Environment Setup
### Using conda
```bash
conda env create -f environment.yml
conda activate filterpipeline
```

## 🔧 Usage Example
```python
from filtering_pipeline.pipeline import Pipeline
import pandas as pd
from pathlib import Path
df = pd.read_pickle("DEHP-MEHP.pkl")

pipeline = Pipeline(
        df = df,
        ligand_name="TPP",
        ligand_smiles="CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC", # SMILES string of ligand
        smarts_pattern='[$([CX3](=O)[OX2H0][#6])]',                  # SMARTS pattern of the chemical moiety of interest of ligand
        max_matches=1000,
        esterase=1,
        find_closest_nuc=1,
        num_threads=1,
        squidly_dir='/nvme2/ariane/home/data/models/squidly_final_models/',
        base_output_dir="pipeline_output"
    )

pipeline.run()

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/HelenSchmid/EnzymeStructuralFiltering",
    "name": "enzyme-filtering-pipeline",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "util",
    "author": "Helen Schmid",
    "author_email": "schmid.helen2@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/11/18/9dddc6350d79eb7e722d43ca92fa0d2bd7e7f4db1b074d3a90c26b8f0dd2/enzyme_filtering_pipeline-0.0.41.tar.gz",
    "platform": null,
    "description": "# EnzymeStructuralFiltering\n\nStructural filtering pipeline using docking and active site heuristics to prioritze ML-predicted enzyme variants for experimental validation. \nThis tool processes superimposed ligand poses and filters them using geometric criteria such as distances, angles, and optionally, esterase-specific filters or nucleophilic proximity.\n\n---\n\n## \ud83d\ude80 Features\n\n- Parse and apply SMARTS patterns to ligand structures.\n- Filter poses based on geometric constraints.\n- Optional esterase or nucleophile-focused analysis.\n- Supports CSV and pickle-based data pipelines.\n\n---\n\n## \ud83d\udce6 Installation\n\n### Option 1: Install via pip\n```bash\npip install XXXX\n```\n### Option 2: Clone the repository\n```bash\ngit clone https://github.com/HelenSchmid/EnzymeStructuralFiltering.git\ncd EnzymeStructuralFiltering\npip install .\n```\n\n## :seedling: Environment Setup\n### Using conda\n```bash\nconda env create -f environment.yml\nconda activate filterpipeline\n```\n\n## \ud83d\udd27 Usage Example\n```python\nfrom filtering_pipeline.pipeline import Pipeline\nimport pandas as pd\nfrom pathlib import Path\ndf = pd.read_pickle(\"DEHP-MEHP.pkl\")\n\npipeline = Pipeline(\n        df = df,\n        ligand_name=\"TPP\",\n        ligand_smiles=\"CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC\", # SMILES string of ligand\n        smarts_pattern='[$([CX3](=O)[OX2H0][#6])]',                  # SMARTS pattern of the chemical moiety of interest of ligand\n        max_matches=1000,\n        esterase=1,\n        find_closest_nuc=1,\n        num_threads=1,\n        squidly_dir='/nvme2/ariane/home/data/models/squidly_final_models/',\n        base_output_dir=\"pipeline_output\"\n    )\n\npipeline.run()\n",
    "bugtrack_url": null,
    "license": "GPL3",
    "summary": null,
    "version": "0.0.41",
    "project_urls": {
        "Bug Tracker": "https://github.com/HelenSchmid/EnzymeStructuralFiltering/issues",
        "Documentation": "https://github.com/HelenSchmid/EnzymeStructuralFiltering",
        "Homepage": "https://github.com/HelenSchmid/EnzymeStructuralFiltering",
        "Source Code": "https://github.com/HelenSchmid/EnzymeStructuralFiltering"
    },
    "split_keywords": [
        "util"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "dc5484e4a9ece293043af8a5c1d26a0adc9f017ede7f5a5fbf0797c1e1d91ab1",
                "md5": "bbdbe154d06e61ffee9fc0dfb12b065a",
                "sha256": "36891fcef43bb9ab24b71af31bb0c2e5c52fc3bf928ce838184f925525ba45f4"
            },
            "downloads": -1,
            "filename": "enzyme_filtering_pipeline-0.0.41-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bbdbe154d06e61ffee9fc0dfb12b065a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 55551,
            "upload_time": "2025-08-03T01:05:32",
            "upload_time_iso_8601": "2025-08-03T01:05:32.579187Z",
            "url": "https://files.pythonhosted.org/packages/dc/54/84e4a9ece293043af8a5c1d26a0adc9f017ede7f5a5fbf0797c1e1d91ab1/enzyme_filtering_pipeline-0.0.41-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "11189dddc6350d79eb7e722d43ca92fa0d2bd7e7f4db1b074d3a90c26b8f0dd2",
                "md5": "9d18735e794debb5e30dea5a972006af",
                "sha256": "7db123e4f560e6dddc7124b6d3c86bda161df6036e2dc9a9311cc05a3ac0f8dd"
            },
            "downloads": -1,
            "filename": "enzyme_filtering_pipeline-0.0.41.tar.gz",
            "has_sig": false,
            "md5_digest": "9d18735e794debb5e30dea5a972006af",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 41126,
            "upload_time": "2025-08-03T01:06:18",
            "upload_time_iso_8601": "2025-08-03T01:06:18.168504Z",
            "url": "https://files.pythonhosted.org/packages/11/18/9dddc6350d79eb7e722d43ca92fa0d2bd7e7f4db1b074d3a90c26b8f0dd2/enzyme_filtering_pipeline-0.0.41.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-03 01:06:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "HelenSchmid",
    "github_project": "EnzymeStructuralFiltering",
    "github_not_found": true,
    "lcname": "enzyme-filtering-pipeline"
}
        
Elapsed time: 1.83799s