epcy


Nameepcy JSON
Version 0.2.6.4 PyPI version JSON
download
home_pageNone
SummaryEvaluation of Predictive CapabilitY
upload_time2024-06-13 15:25:59
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseMIT License Copyright (c) 2017 Eric Audemard Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords density predictive gene feature kde
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===========================================
EPCY :  Evaluation of Predictive CapabilitY
===========================================

+------------------------------------------------------------+------------------------------------------------------------------+
| .. image:: https://zenodo.org/badge/197271057.svg          | .. image:: https://img.shields.io/badge/python-3.11.5-blue.svg   |
|    :target: https://zenodo.org/doi/10.5281/zenodo.10407905 |    :target: https://www.python.org/downloads/release/python-3115/|
+------------------------------------------------------------+------------------------------------------------------------------+


-------
Citing:
-------
* Manuscript in preparation
* EPCY: Evaluation of Predictive CapabilitY for ranking biomarker gene candidates. Poster at ISMB ECCB 2019: https://f1000research.com/posters/8-1349

-------------
Introduction:
-------------

This tool was developed to Evaluate Predictive CapabilitY of each gene (feature) to become a predictive (bio)marker candidates.
Documentation is available `via Read the Docs <https://epcy.readthedocs.io/>`_.

-------------
Requirements:
-------------

* python >= 3.11.5

--------
Install:
--------

Using pypi:
-----------

.. code:: shell

  pip install epcy

From source:
------------
.. code:: shell

  python3 -m venv $HOME/.virtualenvs/epcy
  source $HOME/.virtualenvs/epcy/bin/activate
  pip install pip setuptools --upgrade
  pip install wheel
  cd [your_epcy_folder]
  pip install -e .
  epcy -h

------
Usage:
------

General:
--------

After install:
**************

.. code:: shell

  epcy -h

From source:
************

.. code:: shell

  cd [your_epcy_folder]
  python3 -m epcy -h

Generic case:
-------------

* EPCY is design to work on any quantitative data, provided that values of each feature are comparable between each samples (normalized).
* To run a comparative analysis, `epcy pred` need two tabulated files:

  * A `matrix`_ of quantitative normalized data for each samples (column) with an "ID" column to identify each feature.
  * A `design`_ table which describe the comparison.

.. _matrix: https://github.com/iric-soft/epcy/blob/master/data/small_for_test/normalized_matrix.tsv
.. _design: https://github.com/iric-soft/epcy/blob/master/data/small_for_test/design.tsv

.. code:: shell

  # Run epcy on any normalized quantification data
  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/log_normalized_matrix.tsv -o ./data/small_for_test/EPCY_output

  # If your data are normalized, but require a log2 transforamtion, add --log
  epcy pred --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output

  # If your data are not normalized and require a log2 transforamtion, add --norm --log
  epcy pred --norm --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/matrix.tsv -o ./data/small_for_test/EPCY_output

  # Different runs might show small variations.
  # To ensure reproducibility set a random seed, using --randomseed
  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output --randomseed 42
  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output2 --randomseed 42
  diff ./data/small_for_test/EPCY_output/predictive_capability.tsv ./data/small_for_test/EPCY_output2/predictive_capability.tsv


More documentation is available `via Read the Docs <https://epcy.readthedocs.io/>`_.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "epcy",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "density, predictive, gene, feature, KDE",
    "author": null,
    "author_email": "Eric Audemard <eric.audemard@umontreal.ca>",
    "download_url": "https://files.pythonhosted.org/packages/2d/1a/e473eec1f54304a5cf085708cd9a4867efae38341d1f5606e52406ed92ee/epcy-0.2.6.4.tar.gz",
    "platform": null,
    "description": "===========================================\nEPCY :  Evaluation of Predictive CapabilitY\n===========================================\n\n+------------------------------------------------------------+------------------------------------------------------------------+\n| .. image:: https://zenodo.org/badge/197271057.svg          | .. image:: https://img.shields.io/badge/python-3.11.5-blue.svg   |\n|    :target: https://zenodo.org/doi/10.5281/zenodo.10407905 |    :target: https://www.python.org/downloads/release/python-3115/|\n+------------------------------------------------------------+------------------------------------------------------------------+\n\n\n-------\nCiting:\n-------\n* Manuscript in preparation\n* EPCY: Evaluation of Predictive CapabilitY for ranking biomarker gene candidates. Poster at ISMB ECCB 2019: https://f1000research.com/posters/8-1349\n\n-------------\nIntroduction:\n-------------\n\nThis tool was developed to Evaluate Predictive CapabilitY of each gene (feature) to become a predictive (bio)marker candidates.\nDocumentation is available `via Read the Docs <https://epcy.readthedocs.io/>`_.\n\n-------------\nRequirements:\n-------------\n\n* python >= 3.11.5\n\n--------\nInstall:\n--------\n\nUsing pypi:\n-----------\n\n.. code:: shell\n\n  pip install epcy\n\nFrom source:\n------------\n.. code:: shell\n\n  python3 -m venv $HOME/.virtualenvs/epcy\n  source $HOME/.virtualenvs/epcy/bin/activate\n  pip install pip setuptools --upgrade\n  pip install wheel\n  cd [your_epcy_folder]\n  pip install -e .\n  epcy -h\n\n------\nUsage:\n------\n\nGeneral:\n--------\n\nAfter install:\n**************\n\n.. code:: shell\n\n  epcy -h\n\nFrom source:\n************\n\n.. code:: shell\n\n  cd [your_epcy_folder]\n  python3 -m epcy -h\n\nGeneric case:\n-------------\n\n* EPCY is design to work on any quantitative data, provided that values of each feature are comparable between each samples (normalized).\n* To run a comparative analysis, `epcy pred` need two tabulated files:\n\n  * A `matrix`_ of quantitative normalized data for each samples (column) with an \"ID\" column to identify each feature.\n  * A `design`_ table which describe the comparison.\n\n.. _matrix: https://github.com/iric-soft/epcy/blob/master/data/small_for_test/normalized_matrix.tsv\n.. _design: https://github.com/iric-soft/epcy/blob/master/data/small_for_test/design.tsv\n\n.. code:: shell\n\n  # Run epcy on any normalized quantification data\n  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/log_normalized_matrix.tsv -o ./data/small_for_test/EPCY_output\n\n  # If your data are normalized, but require a log2 transforamtion, add --log\n  epcy pred --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output\n\n  # If your data are not normalized and require a log2 transforamtion, add --norm --log\n  epcy pred --norm --log -d ./data/small_for_test/design.tsv -m ./data/small_for_test/matrix.tsv -o ./data/small_for_test/EPCY_output\n\n  # Different runs might show small variations.\n  # To ensure reproducibility set a random seed, using --randomseed\n  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output --randomseed 42\n  epcy pred -d ./data/small_for_test/design.tsv -m ./data/small_for_test/normalized_matrix.tsv -o ./data/small_for_test/EPCY_output2 --randomseed 42\n  diff ./data/small_for_test/EPCY_output/predictive_capability.tsv ./data/small_for_test/EPCY_output2/predictive_capability.tsv\n\n\nMore documentation is available `via Read the Docs <https://epcy.readthedocs.io/>`_.\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) 2017 Eric Audemard  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
    "summary": "Evaluation of Predictive CapabilitY",
    "version": "0.2.6.4",
    "project_urls": {
        "Documentation": "https://epcy.readthedocs.io/en/latest/",
        "Issues": "https://github.com/iric-soft/epcy/issues",
        "Repository": "https://github.com/iric-soft/epcy.git"
    },
    "split_keywords": [
        "density",
        " predictive",
        " gene",
        " feature",
        " kde"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "65b624949c2a4dbae44319fe8228007d5098984c8c9c4bef5b70524cb7744782",
                "md5": "c2b761992d600e809f7328fc54521808",
                "sha256": "8384c513c6f83addfe2f69a129aaec60fb0ba2c058d98d2922a643646673c3a2"
            },
            "downloads": -1,
            "filename": "epcy-0.2.6.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c2b761992d600e809f7328fc54521808",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.11",
            "size": 40441,
            "upload_time": "2024-06-13T15:25:57",
            "upload_time_iso_8601": "2024-06-13T15:25:57.608322Z",
            "url": "https://files.pythonhosted.org/packages/65/b6/24949c2a4dbae44319fe8228007d5098984c8c9c4bef5b70524cb7744782/epcy-0.2.6.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2d1ae473eec1f54304a5cf085708cd9a4867efae38341d1f5606e52406ed92ee",
                "md5": "70c48da7f4d35eda4f0146442d07402a",
                "sha256": "d8bc4a1ef2c33ffb605d4d381f40fd167197bfe236ce95439a666625e5154af3"
            },
            "downloads": -1,
            "filename": "epcy-0.2.6.4.tar.gz",
            "has_sig": false,
            "md5_digest": "70c48da7f4d35eda4f0146442d07402a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 2527886,
            "upload_time": "2024-06-13T15:25:59",
            "upload_time_iso_8601": "2024-06-13T15:25:59.213261Z",
            "url": "https://files.pythonhosted.org/packages/2d/1a/e473eec1f54304a5cf085708cd9a4867efae38341d1f5606e52406ed92ee/epcy-0.2.6.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-06-13 15:25:59",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "iric-soft",
    "github_project": "epcy",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "epcy"
}
        
Elapsed time: 0.31363s