eppaurora


Nameeppaurora JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://github.com/st-bender/pyeppaurora
SummaryAtomspheric ionization from auroral particle precipitation
upload_time2023-10-31 17:21:08
maintainer
docs_urlNone
authorStefan Bender
requires_python
licenseGPLv2
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            # PyEPPAurora

**Atmospheric ionization from particle precipitation**

[![builds](https://github.com/st-bender/pyeppaurora/actions/workflows/ci_build_and_test.yml/badge.svg?branch=master)](https://github.com/st-bender/pyeppaurora/actions/workflows/ci_build_and_test.yml)
[![docs](https://readthedocs.org/projects/pyeppaurora/badge/?version=latest)](https://pyeppaurora.readthedocs.io/en/latest/?badge=latest)
[![package](https://img.shields.io/pypi/v/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)
[![wheel](https://img.shields.io/pypi/wheel/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)
[![pyversions](https://img.shields.io/pypi/pyversions/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)
[![codecov](https://codecov.io/gh/st-bender/pyeppaurora/badge.svg)](https://codecov.io/gh/st-bender/pyeppaurora)
[![coveralls](https://coveralls.io/repos/github/st-bender/pyeppaurora/badge.svg)](https://coveralls.io/github/st-bender/pyeppaurora)
[![scrutinizer](https://scrutinizer-ci.com/g/st-bender/pyeppaurora/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/st-bender/pyeppaurora/?branch=master)

[![doi](https://zenodo.org/badge/DOI/10.5281/zenodo.4298136.svg)](https://doi.org/10.5281/zenodo.4298136)

Bundles some of the parametrizations for middle and upper atmospheric
ionization and recombination rates for precipitating
auroral and radiation-belt electrons as well as protons.
Includes also some recombination rate parametrizations to convert
the ionization rates to electron densities in the upper atmosphere.
See [References](#references) for a list of included parametrizations.

:warning: This package is in **beta** stage, that is, it works for the most part
and the interface should not change (much) in future versions.

Documentation is available at <https://pyeppaurora.readthedocs.io>.

## Install

### Requirements

- `numpy` - required
- `scipy` - required for 2-D interpolation
- `h5netcdf` - optional for the empirical models, install with `eppaurora[models]`
- `xarray` - optional for the empirical models, install with `eppaurora[models]`
- `pytest` - optional, for testing

### eppaurora

An installable `pip` package called `eppaurora` is available from the
main package repository, it can be installed with:
```sh
$ pip install eppaurora
```
The latest development version can be installed
with [`pip`](https://pip.pypa.io) directly from github
(see <https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support>
and <https://pip.pypa.io/en/stable/reference/pip_install/#git>):

```sh
$ pip install [-e] git+https://github.com/st-bender/pyeppaurora.git
```

The other option is to use a local clone:

```sh
$ git clone https://github.com/st-bender/pyeppaurora.git
$ cd pyeppaurora
```
and then using `pip` (optionally using `-e`, see
<https://pip.pypa.io/en/stable/reference/pip_install/#install-editable>):

```sh
$ pip install [-e] .
```

or using `setup.py`:

```sh
$ python setup.py install
```

Optionally, test the correct function of the module with

```sh
$ py.test [-v]
```

or even including the [doctests](https://docs.python.org/library/doctest.html)
in this document:

```sh
$ py.test [-v] --doctest-glob='*.md'
```

## Usage

The python module itself is named `eppaurora` and is imported as usual.

All functions should be `numpy`-compatible and work with scalars
and appropriately shaped arrays.

### Energetic particle input in the atmosphere

This module include various parametrizations that describe the
energy dissipation of electrons and protons entering the middle
and upper atmosphere (see [References](#references) below).
The functions are correspondingly named

- `rr1987()` for the parametrization by Roble and Ridley, 1987,
- `fang2008()` for the parametrization described in Fang et al., 2008,
- `fang2010()`  for the parametrization described in Fang et al., 2010, and
- `fang2013()` for the proton parametrization by Fang et al., 2013

For example, they are called like this:

```python
>>> import eppaurora as aur
>>> ediss = aur.rr1987(1., 1., 8e5, 5e-10)
>>> ediss
3.3693621076457477e-10
>>> import numpy as np
>>> energies = np.logspace(-1, 2, 4)
>>> fluxes = np.ones_like(energies)
>>> # ca. 100, 150, 200 km
>>> scale_heights = np.array([6e5, 27e5, 40e5])
>>> rhos = np.array([5e-10, 1.7e-12, 2.6e-13])
>>> # energy dissipation "profiles"
>>> # broadcast to the right shape
>>> ediss_prof = aur.fang2008(
... 	energies[None, :], fluxes[None, :],
... 	scale_heights[:, None], rhos[:, None]
... )
>>> ediss_prof
array([[1.37708081e-49, 3.04153876e-09, 4.44256875e-07, 2.52699970e-08],
       [1.60060833e-09, 8.63248169e-08, 3.64564419e-09, 1.62591310e-10],
       [5.19369952e-08, 2.34089350e-08, 5.17379303e-10, 3.19504690e-11]])

```

All functions need additional input for the background atmosphere,
the scale height and the mass density as described in the listed publications.
These can be obtained, for example, from the `nrlmsise00` module
<https://github.com/st-bender/pynrlmsise00>.
Profiles can then be calculated by passing the respective scale height
and density profiles in addition to the energy and flux.

`fang1020()` and `fang2013()` are for mono-energetic particles and to
obtain a realistic description, the results should be integrated
over the respective energy spectrum.
For this there are spectra functions available for Gaussian, Maxwellian,
and power-law distribution.

### Recombination rates

Some atmospheric recombination rates $\alpha$ are available within
`eppaurora.recombination` to convert the ionization rates $q$
to electron densities $n_e$ via $q = \alpha n_e^2$.
The recombination rates are parametrized according to altitude,
see [References](#references).

### Conductivity and conductance

Estimators for the Hall and Pedersen conductivity and conductance
are available via the `eppaurora.conductivity` module.
It contains the approximate solution "Robinson formula" for the conductances,
and the functions for the conductivities that need the electron density
and a model for the magnetic field,
see [References](#references).

For example the "Robinson" conductances for an average energy `en_avg` and flux `flx`
can be obtained by calling `SigmaH_robinson1987(<en_avg>, <flx>)`:
and `SigmaP_robinson1987(<en_avg>, <flx>)`:

```python
>>> import eppaurora as aur
>>> aur.SigmaH_robinson1987(10.0, 1.0)
10.985365619753862
>>> aur.SigmaP_robinson1987(10.0, 1.0)
3.4482758620689653

```

### Empirical ionization rate models

This package provides the coefficients and evaluation function
for the SSUSI-derived ionization rate model.
It is imported via `eppaurora.models` and the coefficients are
available through `ssusiq2023_coeffs()`.

The model itself can be evaluated with `ssusiq2023()`
for a certain geomagnetic latitude (gmlat),
magnetic local time (mlt), and altitude by providing the space-weather
coefficients of Kp, PC, Ap, and the 81-day averaged F10.7 fluxes as inputs:
`ssusiq2023(<gmlat>, <mlt>, <altitude>, [<list of index values>])`.
Note that this returns the natural logarithm of the ionization rate,
normalized to 1 cm⁻³ s⁻¹.

Instead of a list or `numpy`-array, an `xarray.DataArray` can be used for
the indices which will promote the coordinates to the result,
such as an extra time dimension.

```python
>>> from eppaurora.models import ssusiq2023
>>> ssusiq2023(65.0, 3.0, 100.0, [4.0, 10.0, 100.0, 157.0])  # doctest: +SKIP
<xarray.DataArray 'log_q' (dim_0: 1)>
array([18.80679417])
Coordinates:
    altitude  float32 100.0
    latitude  float32 66.6
    mlt       float32 3.0
Dimensions without coordinates: dim_0
Attributes:
    long_name:  natural logarithm of ionization rate
    units:      log(cm-3 s-1)

```

Various options to use different coefficients or to interpolate
to a finer grid exist, check the docstring of `ssusiq2023()`.
The geomagnetic indices can be obtained, for example,
from the `spaceweather` module
<https://github.com/st-bender/pyspaceweather>.

### Other

Basic class and method documentation is accessible via `pydoc`:

```sh
$ pydoc eppaurora
$ pydoc eppaurora.brems
$ pydoc eppaurora.conductivity
$ pydoc eppaurora.electrons
$ pydoc eppaurora.protons
$ pydoc eppaurora.recombination
$ pydoc eppaurora.models.ssusiq2023
```

## References

### Electron ionization

[1]: Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987  
[2]: Fang et al., J. Geophys. Res. Space Phys., 113, A09311, 2008,
doi: [10.1029/2008JA013384](https://doi.org/10.1029/2008JA013384)  
[3]: Fang et al., Geophys. Res. Lett., 37, L22106, 2010,
doi: [10.1029/2010GL045406](https://doi.org/10.1029/2010GL045406)  

### Ionization by secondary electrons from bremsstrahlung

[4]: Berger et al., Journal of Atmospheric and Terrestrial Physics,
Volume 36, Issue 4, 591--617, April 1974,
doi: [10.1016/0021-9169(74)90085-3](https://doi.org/10.1016/0021-9169%2874%2990085-3)

### Proton ionization

[5]: Fang et al., J. Geophys. Res. Space Phys., 118, 5369--5378, 2013,
doi: [10.1002/jgra.50484](https://doi.org/10.1002/jgra.50484)

### Recombination rates

[6]: Vickrey et al., J. Geophys. Res. Space Phys., 87, A7, 5184--5196,
doi: [10.1029/ja087ia07p05184](https://doi.org/10.1029/ja087ia07p05184)  
[7]: Gledhill, Radio Sci., 21, 3, 399-408,
doi: [10.1029/rs021i003p00399](https://doi.org/10.1029/rs021i003p00399)  
[8]: https://ssusi.jhuapl.edu/data_algorithms

### Conductivity and conductance

[9]: Brekke et al., J. Geophys. Res., 79(25), 3773--3790, Sept. 1974,
doi: [10.1029/JA079i025p03773](https://doi.org/10.1029/JA079i025p03773)  
[10]: Vickrey et al., J. Geophys. Res., 86(A1), 65--75, Jan. 1981,
doi: [10.1029/JA086iA01p00065](https://doi.org/10.1029/JA086iA01p00065)  
[11]: Robinson et al., J. Geophys. Res. Space Phys., 92(A3), 2565--2569, Mar. 1987,
doi: [10.1029/JA092iA03p02565](https://doi.org/10.1029/JA092iA03p02565)  

## License

This python interface is free software: you can redistribute it or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 2 (GPLv2), see [local copy](./LICENSE)
or [online version](http://www.gnu.org/licenses/gpl-2.0.html).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/st-bender/pyeppaurora",
    "name": "eppaurora",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Stefan Bender",
    "author_email": "stefan.bender@ntnu.no",
    "download_url": "https://files.pythonhosted.org/packages/5d/dc/1ad9b022251dd3e18c8a011ca700df03fa99bebd4b0b1ff51ed83f5405f5/eppaurora-0.3.1.tar.gz",
    "platform": null,
    "description": "# PyEPPAurora\n\n**Atmospheric ionization from particle precipitation**\n\n[![builds](https://github.com/st-bender/pyeppaurora/actions/workflows/ci_build_and_test.yml/badge.svg?branch=master)](https://github.com/st-bender/pyeppaurora/actions/workflows/ci_build_and_test.yml)\n[![docs](https://readthedocs.org/projects/pyeppaurora/badge/?version=latest)](https://pyeppaurora.readthedocs.io/en/latest/?badge=latest)\n[![package](https://img.shields.io/pypi/v/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)\n[![wheel](https://img.shields.io/pypi/wheel/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)\n[![pyversions](https://img.shields.io/pypi/pyversions/eppaurora.svg?style=flat)](https://pypi.org/project/eppaurora)\n[![codecov](https://codecov.io/gh/st-bender/pyeppaurora/badge.svg)](https://codecov.io/gh/st-bender/pyeppaurora)\n[![coveralls](https://coveralls.io/repos/github/st-bender/pyeppaurora/badge.svg)](https://coveralls.io/github/st-bender/pyeppaurora)\n[![scrutinizer](https://scrutinizer-ci.com/g/st-bender/pyeppaurora/badges/quality-score.png?b=master)](https://scrutinizer-ci.com/g/st-bender/pyeppaurora/?branch=master)\n\n[![doi](https://zenodo.org/badge/DOI/10.5281/zenodo.4298136.svg)](https://doi.org/10.5281/zenodo.4298136)\n\nBundles some of the parametrizations for middle and upper atmospheric\nionization and recombination rates for precipitating\nauroral and radiation-belt electrons as well as protons.\nIncludes also some recombination rate parametrizations to convert\nthe ionization rates to electron densities in the upper atmosphere.\nSee [References](#references) for a list of included parametrizations.\n\n:warning: This package is in **beta** stage, that is, it works for the most part\nand the interface should not change (much) in future versions.\n\nDocumentation is available at <https://pyeppaurora.readthedocs.io>.\n\n## Install\n\n### Requirements\n\n- `numpy` - required\n- `scipy` - required for 2-D interpolation\n- `h5netcdf` - optional for the empirical models, install with `eppaurora[models]`\n- `xarray` - optional for the empirical models, install with `eppaurora[models]`\n- `pytest` - optional, for testing\n\n### eppaurora\n\nAn installable `pip` package called `eppaurora` is available from the\nmain package repository, it can be installed with:\n```sh\n$ pip install eppaurora\n```\nThe latest development version can be installed\nwith [`pip`](https://pip.pypa.io) directly from github\n(see <https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support>\nand <https://pip.pypa.io/en/stable/reference/pip_install/#git>):\n\n```sh\n$ pip install [-e] git+https://github.com/st-bender/pyeppaurora.git\n```\n\nThe other option is to use a local clone:\n\n```sh\n$ git clone https://github.com/st-bender/pyeppaurora.git\n$ cd pyeppaurora\n```\nand then using `pip` (optionally using `-e`, see\n<https://pip.pypa.io/en/stable/reference/pip_install/#install-editable>):\n\n```sh\n$ pip install [-e] .\n```\n\nor using `setup.py`:\n\n```sh\n$ python setup.py install\n```\n\nOptionally, test the correct function of the module with\n\n```sh\n$ py.test [-v]\n```\n\nor even including the [doctests](https://docs.python.org/library/doctest.html)\nin this document:\n\n```sh\n$ py.test [-v] --doctest-glob='*.md'\n```\n\n## Usage\n\nThe python module itself is named `eppaurora` and is imported as usual.\n\nAll functions should be `numpy`-compatible and work with scalars\nand appropriately shaped arrays.\n\n### Energetic particle input in the atmosphere\n\nThis module include various parametrizations that describe the\nenergy dissipation of electrons and protons entering the middle\nand upper atmosphere (see [References](#references) below).\nThe functions are correspondingly named\n\n- `rr1987()` for the parametrization by Roble and Ridley, 1987,\n- `fang2008()` for the parametrization described in Fang et al., 2008,\n- `fang2010()`  for the parametrization described in Fang et al., 2010, and\n- `fang2013()` for the proton parametrization by Fang et al., 2013\n\nFor example, they are called like this:\n\n```python\n>>> import eppaurora as aur\n>>> ediss = aur.rr1987(1., 1., 8e5, 5e-10)\n>>> ediss\n3.3693621076457477e-10\n>>> import numpy as np\n>>> energies = np.logspace(-1, 2, 4)\n>>> fluxes = np.ones_like(energies)\n>>> # ca. 100, 150, 200 km\n>>> scale_heights = np.array([6e5, 27e5, 40e5])\n>>> rhos = np.array([5e-10, 1.7e-12, 2.6e-13])\n>>> # energy dissipation \"profiles\"\n>>> # broadcast to the right shape\n>>> ediss_prof = aur.fang2008(\n... \tenergies[None, :], fluxes[None, :],\n... \tscale_heights[:, None], rhos[:, None]\n... )\n>>> ediss_prof\narray([[1.37708081e-49, 3.04153876e-09, 4.44256875e-07, 2.52699970e-08],\n       [1.60060833e-09, 8.63248169e-08, 3.64564419e-09, 1.62591310e-10],\n       [5.19369952e-08, 2.34089350e-08, 5.17379303e-10, 3.19504690e-11]])\n\n```\n\nAll functions need additional input for the background atmosphere,\nthe scale height and the mass density as described in the listed publications.\nThese can be obtained, for example, from the `nrlmsise00` module\n<https://github.com/st-bender/pynrlmsise00>.\nProfiles can then be calculated by passing the respective scale height\nand density profiles in addition to the energy and flux.\n\n`fang1020()` and `fang2013()` are for mono-energetic particles and to\nobtain a realistic description, the results should be integrated\nover the respective energy spectrum.\nFor this there are spectra functions available for Gaussian, Maxwellian,\nand power-law distribution.\n\n### Recombination rates\n\nSome atmospheric recombination rates $\\alpha$ are available within\n`eppaurora.recombination` to convert the ionization rates $q$\nto electron densities $n_e$ via $q = \\alpha n_e^2$.\nThe recombination rates are parametrized according to altitude,\nsee [References](#references).\n\n### Conductivity and conductance\n\nEstimators for the Hall and Pedersen conductivity and conductance\nare available via the `eppaurora.conductivity` module.\nIt contains the approximate solution \"Robinson formula\" for the conductances,\nand the functions for the conductivities that need the electron density\nand a model for the magnetic field,\nsee [References](#references).\n\nFor example the \"Robinson\" conductances for an average energy `en_avg` and flux `flx`\ncan be obtained by calling `SigmaH_robinson1987(<en_avg>, <flx>)`:\nand `SigmaP_robinson1987(<en_avg>, <flx>)`:\n\n```python\n>>> import eppaurora as aur\n>>> aur.SigmaH_robinson1987(10.0, 1.0)\n10.985365619753862\n>>> aur.SigmaP_robinson1987(10.0, 1.0)\n3.4482758620689653\n\n```\n\n### Empirical ionization rate models\n\nThis package provides the coefficients and evaluation function\nfor the SSUSI-derived ionization rate model.\nIt is imported via `eppaurora.models` and the coefficients are\navailable through `ssusiq2023_coeffs()`.\n\nThe model itself can be evaluated with `ssusiq2023()`\nfor a certain geomagnetic latitude (gmlat),\nmagnetic local time (mlt), and altitude by providing the space-weather\ncoefficients of Kp, PC, Ap, and the 81-day averaged F10.7 fluxes as inputs:\n`ssusiq2023(<gmlat>, <mlt>, <altitude>, [<list of index values>])`.\nNote that this returns the natural logarithm of the ionization rate,\nnormalized to 1 cm\u207b\u00b3 s\u207b\u00b9.\n\nInstead of a list or `numpy`-array, an `xarray.DataArray` can be used for\nthe indices which will promote the coordinates to the result,\nsuch as an extra time dimension.\n\n```python\n>>> from eppaurora.models import ssusiq2023\n>>> ssusiq2023(65.0, 3.0, 100.0, [4.0, 10.0, 100.0, 157.0])  # doctest: +SKIP\n<xarray.DataArray 'log_q' (dim_0: 1)>\narray([18.80679417])\nCoordinates:\n    altitude  float32 100.0\n    latitude  float32 66.6\n    mlt       float32 3.0\nDimensions without coordinates: dim_0\nAttributes:\n    long_name:  natural logarithm of ionization rate\n    units:      log(cm-3 s-1)\n\n```\n\nVarious options to use different coefficients or to interpolate\nto a finer grid exist, check the docstring of `ssusiq2023()`.\nThe geomagnetic indices can be obtained, for example,\nfrom the `spaceweather` module\n<https://github.com/st-bender/pyspaceweather>.\n\n### Other\n\nBasic class and method documentation is accessible via `pydoc`:\n\n```sh\n$ pydoc eppaurora\n$ pydoc eppaurora.brems\n$ pydoc eppaurora.conductivity\n$ pydoc eppaurora.electrons\n$ pydoc eppaurora.protons\n$ pydoc eppaurora.recombination\n$ pydoc eppaurora.models.ssusiq2023\n```\n\n## References\n\n### Electron ionization\n\n[1]: Roble and Ridley, Ann. Geophys., 5A(6), 369--382, 1987  \n[2]: Fang et al., J. Geophys. Res. Space Phys., 113, A09311, 2008,\ndoi: [10.1029/2008JA013384](https://doi.org/10.1029/2008JA013384)  \n[3]: Fang et al., Geophys. Res. Lett., 37, L22106, 2010,\ndoi: [10.1029/2010GL045406](https://doi.org/10.1029/2010GL045406)  \n\n### Ionization by secondary electrons from bremsstrahlung\n\n[4]: Berger et al., Journal of Atmospheric and Terrestrial Physics,\nVolume 36, Issue 4, 591--617, April 1974,\ndoi: [10.1016/0021-9169(74)90085-3](https://doi.org/10.1016/0021-9169%2874%2990085-3)\n\n### Proton ionization\n\n[5]: Fang et al., J. Geophys. Res. Space Phys., 118, 5369--5378, 2013,\ndoi: [10.1002/jgra.50484](https://doi.org/10.1002/jgra.50484)\n\n### Recombination rates\n\n[6]: Vickrey et al., J. Geophys. Res. Space Phys., 87, A7, 5184--5196,\ndoi: [10.1029/ja087ia07p05184](https://doi.org/10.1029/ja087ia07p05184)  \n[7]: Gledhill, Radio Sci., 21, 3, 399-408,\ndoi: [10.1029/rs021i003p00399](https://doi.org/10.1029/rs021i003p00399)  \n[8]: https://ssusi.jhuapl.edu/data_algorithms\n\n### Conductivity and conductance\n\n[9]: Brekke et al., J. Geophys. Res., 79(25), 3773--3790, Sept. 1974,\ndoi: [10.1029/JA079i025p03773](https://doi.org/10.1029/JA079i025p03773)  \n[10]: Vickrey et al., J. Geophys. Res., 86(A1), 65--75, Jan. 1981,\ndoi: [10.1029/JA086iA01p00065](https://doi.org/10.1029/JA086iA01p00065)  \n[11]: Robinson et al., J. Geophys. Res. Space Phys., 92(A3), 2565--2569, Mar. 1987,\ndoi: [10.1029/JA092iA03p02565](https://doi.org/10.1029/JA092iA03p02565)  \n\n## License\n\nThis python interface is free software: you can redistribute it or modify\nit under the terms of the GNU General Public License as published by\nthe Free Software Foundation, version 2 (GPLv2), see [local copy](./LICENSE)\nor [online version](http://www.gnu.org/licenses/gpl-2.0.html).\n",
    "bugtrack_url": null,
    "license": "GPLv2",
    "summary": "Atomspheric ionization from auroral particle precipitation",
    "version": "0.3.1",
    "project_urls": {
        "Homepage": "https://github.com/st-bender/pyeppaurora"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9660f05d170110d4da7774dba79fcbf7343fb86dc3dd4de170455aec8cc73135",
                "md5": "484ac1daa559d9b4f5def63829e43e3b",
                "sha256": "e5cb8e865e08790e68743e77be609ddaf6570b3cdee3d5676748e9ddb4b7e1a7"
            },
            "downloads": -1,
            "filename": "eppaurora-0.3.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "484ac1daa559d9b4f5def63829e43e3b",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 180128,
            "upload_time": "2023-10-31T17:21:05",
            "upload_time_iso_8601": "2023-10-31T17:21:05.161826Z",
            "url": "https://files.pythonhosted.org/packages/96/60/f05d170110d4da7774dba79fcbf7343fb86dc3dd4de170455aec8cc73135/eppaurora-0.3.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ddc1ad9b022251dd3e18c8a011ca700df03fa99bebd4b0b1ff51ed83f5405f5",
                "md5": "3da213350557f72aeb52e26d085aa3e7",
                "sha256": "fc667f3c702478c9f5cc5384f18855cacf3d38ab913a21ac6c6922e421adb8b2"
            },
            "downloads": -1,
            "filename": "eppaurora-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "3da213350557f72aeb52e26d085aa3e7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 186670,
            "upload_time": "2023-10-31T17:21:08",
            "upload_time_iso_8601": "2023-10-31T17:21:08.394527Z",
            "url": "https://files.pythonhosted.org/packages/5d/dc/1ad9b022251dd3e18c8a011ca700df03fa99bebd4b0b1ff51ed83f5405f5/eppaurora-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-31 17:21:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "st-bender",
    "github_project": "pyeppaurora",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": true,
    "lcname": "eppaurora"
}
        
Elapsed time: 3.33914s