epytope


Nameepytope JSON
Version 3.4.0 PyPI version JSON
download
home_pagehttps://github.com/KohlbacherLab/epytope
SummaryA Framework for Epitope Detection and Vaccine Design
upload_time2024-01-11 21:53:04
maintainerChristopher Mohr, Jonas Scheid
docs_urlNone
authorBenjamin Schubert, Mathias Walzer, Christopher Mohr, Leon Kuchenbecker
requires_python
licenseBSD
keywords epitope prediction vaccine design hla mhc
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # epytope - An Immunoinformatics Framework for Python

![PyPi](https://github.com/KohlbacherLab/epytope/actions/workflows/pypi-publish.yml/badge.svg)
![Tests](https://github.com/KohlbacherLab/epytope/actions/workflows/python-test-conda.yml/badge.svg)
![Tests external](https://github.com/KohlbacherLab/epytope/actions/workflows/python-test-conda-external.yml/badge.svg)
[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/version.svg)](https://anaconda.org/bioconda/epytope)
[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/latest_release_date.svg)](https://anaconda.org/bioconda/epytope)
[![License](https://img.shields.io/badge/License-BSD_3--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)
[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/platforms.svg
)](https://anaconda.org/bioconda/epytope)
[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/downloads.svg)](https://anaconda.org/bioconda/epytope)

Copyright 2014 by Benjamin Schuber, Mathias Walzer, Philipp Brachvogel, Andras Szolek, Christopher Mohr, and Oliver Kohlbacher

**epytope** is a framework for T-cell epitope detection, and vaccine design. It offers consistent, easy, and simultaneous access to well established prediction methods of computational immunology. **epytope** can handle polymorphic proteins and offers analysis tools to select, assemble, and design linker sequences for string-of-beads epitope-based vaccines. It is implemented in Python in a modular way and can easily be extended by user defined methods.

## Copyright

epytope is released under the three clause BSD license.

## Installation

use the following commands:

    pip install git+https://github.com/KohlbacherLab/epytope

## Dependencies

### Python Packages

- pandas
- pyomo>=4.0
- svmlight
- PyMySQL
- biopython
- pyVCF
- h5py<=2.10.0

### Third-Party Software (not installed through pip)

- NetMHC predictor family (NetMHC(pan)-(I/II), NetChop, NetCTL) (<http://www.cbs.dtu.dk/services/software.php>)
- PickPocket (<http://www.cbs.dtu.dk/services/software.php>)
- Integer Linear Programming Solver (recommended CBC: <https://projects.coin-or.org/Cbc>)

Please pay attention to the different licensing of third party tools.

## Framework summary

Currently **epytope** provides implementations of several prediction methods or interfaces to external prediction tools.

- Cleavage Prediction
  - Proteasomal cleavage matrix-based prediction by [Dönnes et al.](https://pubmed.ncbi.nlm.nih.gov/15987883/)
  - ProteaSMM by [Tenzer et al.](https://pubmed.ncbi.nlm.nih.gov/15868101/)
  - [NetChop](https://pubmed.ncbi.nlm.nih.gov/15744535/) 3.1
- Epitope Assembly
  - Approach by [Toussaint et al.](https://pubmed.ncbi.nlm.nih.gov/21875632/)
  - Bi-objective extension of approach by [Toussaint et al.](https://pubmed.ncbi.nlm.nih.gov/21875632/)
  - Assembly with spacers by [Schubert et al.](https://pubmed.ncbi.nlm.nih.gov/26813686/)
- Epitope Prediction
  - [SYFPEITHI](https://link.springer.com/article/10.1007/s002510050595)
  - [MHCNuggets](https://pubmed.ncbi.nlm.nih.gov/31871119/) 2.0, 2.3.2
  - [MHCflurry](https://pubmed.ncbi.nlm.nih.gov/29960884/) 1.2.2, 1.4.3
  - [NetMHC](https://pubmed.ncbi.nlm.nih.gov/26515819/) 3.0, 3.4, 4.0
  - [NetMHCII](https://pubmed.ncbi.nlm.nih.gov/29315598/) 2.2, 2.3
  - [NetMHCpan](https://pubmed.ncbi.nlm.nih.gov/28978689/) 2.4, 2.8, 3.0, 4.0, 4.1
  - [NetMHCIIpan](https://pubmed.ncbi.nlm.nih.gov/38000035/) 3.0, 3.1, 4.0, 4.1, 4.2, 4.3
  - [PickPocket](https://pubmed.ncbi.nlm.nih.gov/19297351/) 1.1
  - [NetCTLpan](https://pubmed.ncbi.nlm.nih.gov/20379710/) 1.1
- Epitope Selection
  - [OptiTope](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703925/)
- Stability Prediction
  - [NetMHCstabpan](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976001/) 1.0
- TAPP Prediction
  - TAP prediction model by [Doytchinova et al.](https://pubmed.ncbi.nlm.nih.gov/15557175/)
  - [SMMTAP](https://pubmed.ncbi.nlm.nih.gov/12902473/)

## Getting Started

Users and developers should start by reading our [wiki](https://github.com/KohlbacherLab/epytope/wiki) and [IPython tutorials](https://github.com/KohlbacherLab/epytope/tree/master/epytope/tutorials). A reference documentation is also available [online](http://epytope.readthedocs.org/en/latest/).

## How to Cite

Please cite

[Schubert, B., Walzer, M., Brachvogel, H-P., Sozolek, A., Mohr, C., and Kohlbacher, O. (2016). FRED 2 - An Immunoinformatics Framework for Python. Bioinformatics 2016; doi: 10.1093/bioinformatics/btw113](http://bioinformatics.oxfordjournals.org/content/early/2016/02/26/bioinformatics.btw113.short?rss=1)

and the original publications of the used methods.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/KohlbacherLab/epytope",
    "name": "epytope",
    "maintainer": "Christopher Mohr, Jonas Scheid",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "contact.cmohr@gmail.com, jonas.scheid@uni-tuebingen.de",
    "keywords": "epitope prediction vaccine design HLA MHC",
    "author": "Benjamin Schubert, Mathias Walzer, Christopher Mohr, Leon Kuchenbecker",
    "author_email": "benjamin.schubert@helmholtz-muenchen.de, walzer@ebi.ac.uk, contact.cmohr@gmail.com, leon.kuchenbecker@uni-tuebingen.de",
    "download_url": "https://files.pythonhosted.org/packages/38/49/39dbeba37cc041abd7686b630c7b9f2794c5a8e852f3acc9e8542f17185c/epytope-3.4.0.tar.gz",
    "platform": null,
    "description": "# epytope - An Immunoinformatics Framework for Python\n\n![PyPi](https://github.com/KohlbacherLab/epytope/actions/workflows/pypi-publish.yml/badge.svg)\n![Tests](https://github.com/KohlbacherLab/epytope/actions/workflows/python-test-conda.yml/badge.svg)\n![Tests external](https://github.com/KohlbacherLab/epytope/actions/workflows/python-test-conda-external.yml/badge.svg)\n[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/version.svg)](https://anaconda.org/bioconda/epytope)\n[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/latest_release_date.svg)](https://anaconda.org/bioconda/epytope)\n[![License](https://img.shields.io/badge/License-BSD_3--Clause-blue.svg)](https://opensource.org/licenses/BSD-3-Clause)\n[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/platforms.svg\n)](https://anaconda.org/bioconda/epytope)\n[![Anaconda-Server Badge](https://anaconda.org/bioconda/epytope/badges/downloads.svg)](https://anaconda.org/bioconda/epytope)\n\nCopyright 2014 by Benjamin Schuber, Mathias Walzer, Philipp Brachvogel, Andras Szolek, Christopher Mohr, and Oliver Kohlbacher\n\n**epytope** is a framework for T-cell epitope detection, and vaccine design. It offers consistent, easy, and simultaneous access to well established prediction methods of computational immunology. **epytope** can handle polymorphic proteins and offers analysis tools to select, assemble, and design linker sequences for string-of-beads epitope-based vaccines. It is implemented in Python in a modular way and can easily be extended by user defined methods.\n\n## Copyright\n\nepytope is released under the three clause BSD license.\n\n## Installation\n\nuse the following commands:\n\n    pip install git+https://github.com/KohlbacherLab/epytope\n\n## Dependencies\n\n### Python Packages\n\n- pandas\n- pyomo>=4.0\n- svmlight\n- PyMySQL\n- biopython\n- pyVCF\n- h5py<=2.10.0\n\n### Third-Party Software (not installed through pip)\n\n- NetMHC predictor family (NetMHC(pan)-(I/II), NetChop, NetCTL) (<http://www.cbs.dtu.dk/services/software.php>)\n- PickPocket (<http://www.cbs.dtu.dk/services/software.php>)\n- Integer Linear Programming Solver (recommended CBC: <https://projects.coin-or.org/Cbc>)\n\nPlease pay attention to the different licensing of third party tools.\n\n## Framework summary\n\nCurrently **epytope** provides implementations of several prediction methods or interfaces to external prediction tools.\n\n- Cleavage Prediction\n  - Proteasomal cleavage matrix-based prediction by [D\u00f6nnes et al.](https://pubmed.ncbi.nlm.nih.gov/15987883/)\n  - ProteaSMM by [Tenzer et al.](https://pubmed.ncbi.nlm.nih.gov/15868101/)\n  - [NetChop](https://pubmed.ncbi.nlm.nih.gov/15744535/) 3.1\n- Epitope Assembly\n  - Approach by [Toussaint et al.](https://pubmed.ncbi.nlm.nih.gov/21875632/)\n  - Bi-objective extension of approach by [Toussaint et al.](https://pubmed.ncbi.nlm.nih.gov/21875632/)\n  - Assembly with spacers by [Schubert et al.](https://pubmed.ncbi.nlm.nih.gov/26813686/)\n- Epitope Prediction\n  - [SYFPEITHI](https://link.springer.com/article/10.1007/s002510050595)\n  - [MHCNuggets](https://pubmed.ncbi.nlm.nih.gov/31871119/) 2.0, 2.3.2\n  - [MHCflurry](https://pubmed.ncbi.nlm.nih.gov/29960884/) 1.2.2, 1.4.3\n  - [NetMHC](https://pubmed.ncbi.nlm.nih.gov/26515819/) 3.0, 3.4, 4.0\n  - [NetMHCII](https://pubmed.ncbi.nlm.nih.gov/29315598/) 2.2, 2.3\n  - [NetMHCpan](https://pubmed.ncbi.nlm.nih.gov/28978689/) 2.4, 2.8, 3.0, 4.0, 4.1\n  - [NetMHCIIpan](https://pubmed.ncbi.nlm.nih.gov/38000035/) 3.0, 3.1, 4.0, 4.1, 4.2, 4.3\n  - [PickPocket](https://pubmed.ncbi.nlm.nih.gov/19297351/) 1.1\n  - [NetCTLpan](https://pubmed.ncbi.nlm.nih.gov/20379710/) 1.1\n- Epitope Selection\n  - [OptiTope](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703925/)\n- Stability Prediction\n  - [NetMHCstabpan](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4976001/) 1.0\n- TAPP Prediction\n  - TAP prediction model by [Doytchinova et al.](https://pubmed.ncbi.nlm.nih.gov/15557175/)\n  - [SMMTAP](https://pubmed.ncbi.nlm.nih.gov/12902473/)\n\n## Getting Started\n\nUsers and developers should start by reading our [wiki](https://github.com/KohlbacherLab/epytope/wiki) and [IPython tutorials](https://github.com/KohlbacherLab/epytope/tree/master/epytope/tutorials). A reference documentation is also available [online](http://epytope.readthedocs.org/en/latest/).\n\n## How to Cite\n\nPlease cite\n\n[Schubert, B., Walzer, M., Brachvogel, H-P., Sozolek, A., Mohr, C., and Kohlbacher, O. (2016). FRED 2 - An Immunoinformatics Framework for Python. Bioinformatics 2016; doi: 10.1093/bioinformatics/btw113](http://bioinformatics.oxfordjournals.org/content/early/2016/02/26/bioinformatics.btw113.short?rss=1)\n\nand the original publications of the used methods.\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "A Framework for Epitope Detection and Vaccine Design",
    "version": "3.4.0",
    "project_urls": {
        "Homepage": "https://github.com/KohlbacherLab/epytope"
    },
    "split_keywords": [
        "epitope",
        "prediction",
        "vaccine",
        "design",
        "hla",
        "mhc"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "69fded1fc78dc3a3e1caa158d01540a60f205be4a501721a7e605bbbbdbb3ac2",
                "md5": "ff5a04f12887ed081e2fa13d9e6beee5",
                "sha256": "0808ab2eb794c7c20bd564eca85a8cd2f3475ba4bdff1f0e3411734ae78003cd"
            },
            "downloads": -1,
            "filename": "epytope-3.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ff5a04f12887ed081e2fa13d9e6beee5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 1693814,
            "upload_time": "2024-01-11T21:53:02",
            "upload_time_iso_8601": "2024-01-11T21:53:02.741319Z",
            "url": "https://files.pythonhosted.org/packages/69/fd/ed1fc78dc3a3e1caa158d01540a60f205be4a501721a7e605bbbbdbb3ac2/epytope-3.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "384939dbeba37cc041abd7686b630c7b9f2794c5a8e852f3acc9e8542f17185c",
                "md5": "2a6feaf425f2e3c05f64983e92b68c6d",
                "sha256": "425c280f5aa9526744c8a62c27c0e08afb2df8f6fe6b1b7f60dd1cb0888fa443"
            },
            "downloads": -1,
            "filename": "epytope-3.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2a6feaf425f2e3c05f64983e92b68c6d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 820612,
            "upload_time": "2024-01-11T21:53:04",
            "upload_time_iso_8601": "2024-01-11T21:53:04.926470Z",
            "url": "https://files.pythonhosted.org/packages/38/49/39dbeba37cc041abd7686b630c7b9f2794c5a8e852f3acc9e8542f17185c/epytope-3.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-01-11 21:53:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "KohlbacherLab",
    "github_project": "epytope",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "epytope"
}
        
Elapsed time: 0.63574s