Raw data
{
"_id": null,
"home_page": "https://github.com/lucidrains/equiformer-pytorch",
"name": "equiformer-pytorch",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "artificial intelligence,deep learning,transformers,attention mechanism,equivariance,molecules,proteins",
"author": "Phil Wang",
"author_email": "lucidrains@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/15/79/67e7ffc935c61a7d522353929c871c444b5d9025c9e4d8058b1ba304dd1f/equiformer-pytorch-0.5.2.tar.gz",
"platform": null,
"description": "",
"bugtrack_url": null,
"license": "MIT",
"summary": "Equiformer - SE3/E3 Graph Attention Transformer for Molecules and Proteins",
"version": "0.5.2",
"project_urls": {
"Homepage": "https://github.com/lucidrains/equiformer-pytorch"
},
"split_keywords": [
"artificial intelligence",
"deep learning",
"transformers",
"attention mechanism",
"equivariance",
"molecules",
"proteins"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "157967e7ffc935c61a7d522353929c871c444b5d9025c9e4d8058b1ba304dd1f",
"md5": "0a58df162666c78223d76dc5a29a58bc",
"sha256": "79662e922ff32372cb03a134946ae9b49a6f042f7fa18860f020be66ee6293e7"
},
"downloads": -1,
"filename": "equiformer-pytorch-0.5.2.tar.gz",
"has_sig": false,
"md5_digest": "0a58df162666c78223d76dc5a29a58bc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 9214495,
"upload_time": "2024-01-17T18:57:40",
"upload_time_iso_8601": "2024-01-17T18:57:40.306039Z",
"url": "https://files.pythonhosted.org/packages/15/79/67e7ffc935c61a7d522353929c871c444b5d9025c9e4d8058b1ba304dd1f/equiformer-pytorch-0.5.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-01-17 18:57:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "lucidrains",
"github_project": "equiformer-pytorch",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "equiformer-pytorch"
}