Name | erdetect JSON |
Version |
2.6.2
JSON |
| download |
home_page | None |
Summary | A package for the automatic detection of evoked responses in SPES/CCEP data |
upload_time | 2025-01-09 22:56:51 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | GPLv3 |
keywords |
evoked response
detection
ieeg
n1
spes
ccep
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Evoked Response Detection
A python package and docker application for the automatic detection of evoked responses in SPES/CCEP data
## Python Usage
1. First install ERdetect, in the command-line run:
```
pip install erdetect
```
2. To run:
- a) With a graphical user interface:
```
python -m erdetect ~/bids_data ~/output/ --gui
```
- b) From the commandline:
```
python -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```
- c) To process a subset directly in a python script:
```
import erdetect
erdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')
```
## Docker Usage
To launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:
```
docker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```
For example, to run an analysis, type:
```
docker run -ti --rm \
-v /local_bids_data_root/:/data \
-v /local_output_path/:/output \
multimodalneuro/erdetect /data /output --participant_label 01
```
## Configuration & Documentation
General documentation can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/).
The tool can be configured by three means:
- Graphical User Interface (GUI)
- Command-line, arguments and options can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/Configuration#command-line-arguments)
- JSON input configuration file, usage documentation can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/Configuration#json-input-configuration-file)
## Acknowledgements
- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)
- Deviation from baseline method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar
- Adapted the peak-finder algorithm by Nathanael Yoder, see [Matlab version](http://www.mathworks.com/matlabcentral/fileexchange/25500).
- Dependencies:
- IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)
- BIDS-validator (https://github.com/bids-standard/bids-validator)
- NumPy
- SciPy
- Matplotlib
- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes
Raw data
{
"_id": null,
"home_page": null,
"name": "erdetect",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "evoked response, detection, ieeg, n1, SPES, CCEP",
"author": null,
"author_email": "Max van den Boom <m.a.vandenboom84@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ae/6d/4f3f26fc4c6e6b8883f5540a878bf9597bc9585c07e9509c553eb6ee8ead/erdetect-2.6.2.tar.gz",
"platform": null,
"description": "# Evoked Response Detection\r\nA python package and docker application for the automatic detection of evoked responses in SPES/CCEP data\r\n\r\n## Python Usage\r\n\r\n1. First install ERdetect, in the command-line run:\r\n```\r\npip install erdetect\r\n```\r\n\r\n2. To run:\r\n- a) With a graphical user interface:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ --gui\r\n```\r\n\r\n- b) From the commandline:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\n\r\n- c) To process a subset directly in a python script:\r\n```\r\nimport erdetect\r\nerdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')\r\n```\r\n\r\n## Docker Usage\r\n\r\nTo launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:\r\n\r\n```\r\ndocker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\nFor example, to run an analysis, type:\r\n\r\n```\r\ndocker run -ti --rm \\\r\n-v /local_bids_data_root/:/data \\\r\n-v /local_output_path/:/output \\\r\nmultimodalneuro/erdetect /data /output --participant_label 01\r\n```\r\n\r\n\r\n\r\n## Configuration & Documentation\r\n\r\nGeneral documentation can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/).\r\n\r\nThe tool can be configured by three means:\r\n- Graphical User Interface (GUI)\r\n- Command-line, arguments and options can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/Configuration#command-line-arguments)\r\n- JSON input configuration file, usage documentation can be found [here](https://github.com/MultimodalNeuroimagingLab/erdetect/wiki/Configuration#json-input-configuration-file)\r\n\r\n\r\n## Acknowledgements\r\n\r\n- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)\r\n- Deviation from baseline method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar\r\n- Adapted the peak-finder algorithm by Nathanael Yoder, see [Matlab version](http://www.mathworks.com/matlabcentral/fileexchange/25500).\r\n- Dependencies:\r\n - IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)\r\n - BIDS-validator (https://github.com/bids-standard/bids-validator)\r\n - NumPy\r\n - SciPy\r\n - Matplotlib\r\n\r\n- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes\r\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "A package for the automatic detection of evoked responses in SPES/CCEP data",
"version": "2.6.2",
"project_urls": {
"documentation": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
"homepage": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
"repository": "https://github.com/MultimodalNeuroimagingLab/ERDetect"
},
"split_keywords": [
"evoked response",
" detection",
" ieeg",
" n1",
" spes",
" ccep"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5866441ff4e0c13172354528b49dd05a3bdcce9822317a2e9c5d341479a90a54",
"md5": "54b4f4d8a2890f2501edb80ae0be79ee",
"sha256": "8bd0f8746c51f07120a64888e6f2d81cd417706924674cdb5fa2125ec7f2c840"
},
"downloads": -1,
"filename": "erdetect-2.6.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "54b4f4d8a2890f2501edb80ae0be79ee",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 70349,
"upload_time": "2025-01-09T22:56:50",
"upload_time_iso_8601": "2025-01-09T22:56:50.655274Z",
"url": "https://files.pythonhosted.org/packages/58/66/441ff4e0c13172354528b49dd05a3bdcce9822317a2e9c5d341479a90a54/erdetect-2.6.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ae6d4f3f26fc4c6e6b8883f5540a878bf9597bc9585c07e9509c553eb6ee8ead",
"md5": "6e53ddee8b60b31e8f4679214234e9bc",
"sha256": "9963ea1aa80bf46f3ea0de400edde773f6b3e70ac43a27b0ef93905f135744ef"
},
"downloads": -1,
"filename": "erdetect-2.6.2.tar.gz",
"has_sig": false,
"md5_digest": "6e53ddee8b60b31e8f4679214234e9bc",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 65630,
"upload_time": "2025-01-09T22:56:51",
"upload_time_iso_8601": "2025-01-09T22:56:51.746413Z",
"url": "https://files.pythonhosted.org/packages/ae/6d/4f3f26fc4c6e6b8883f5540a878bf9597bc9585c07e9509c553eb6ee8ead/erdetect-2.6.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-09 22:56:51",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "MultimodalNeuroimagingLab",
"github_project": "ERDetect",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "erdetect"
}