Name | erdetect JSON |
Version |
2.5.0
JSON |
| download |
home_page | |
Summary | A package for the automatic detection of evoked responses in SPES/CCEP data |
upload_time | 2023-09-25 15:00:40 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.8 |
license | GPLv3 |
keywords |
evoked response
detection
ieeg
n1
spes
ccep
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# Evoked Response Detection
A python package and docker application for the automatic detection of evoked responses in SPES/CCEP data
## Python Usage
1. First install ERdetect, in the command-line run:
```
pip install erdetect
```
2. To run:
- a) With a graphical user interface:
```
python -m erdetect ~/bids_data ~/output/ --gui
```
- b) From the commandline:
```
python -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```
- c) To process a subset directly in a python script:
```
import erdetect
erdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')
```
## Docker Usage
To launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:
```
docker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```
For example, to run an analysis, type:
```
docker run -ti --rm \
-v /local_bids_data_root/:/data \
-v /local_output_path/:/output \
multimodalneuro/erdetect /data /output --participant_label 01
```
## Configure detection
From the command-line, a JSON file can be passed using the ```--config_filepath [JSON_FILEPATH]``` parameter to adjust the preprocessing, the evoked response detection and the visualization settings.
An example JSON containing the standard settings looks as follows:
```
{
"preprocess": {
"high_pass": false,
"line_noise_removal": "off",
"early_re_referencing": {
"enabled": false,
"method": "CAR",
"stim_excl_epoch": [-1.0, 2.0]
}
},
"trials": {
"trial_epoch": [-1.0, 2.0],
"out_of_bounds_handling": "first_last_only",
"baseline_epoch": [-0.5, -0.02],
"baseline_norm": "median",
"concat_bidirectional_pairs": true,
"minimum_stimpair_trials": 5
},
"channels": {
"measured_types": ["ECOG", "SEEG", "DBS"],
"stim_types": ["ECOG", "SEEG", "DBS"]
},
"detection": {
"negative": true,
"positive": false,
"peak_search_epoch": [ 0, 0.5],
"response_search_epoch": [ 0.009, 0.09],
"method": "std_base",
"std_base": {
"baseline_epoch": [-1, -0.1],
"baseline_threshold_factor": 3.4
}
},
"visualization": {
"negative": true,
"positive": false,
"x_axis_epoch": [-0.2, 1],
"blank_stim_epoch": [-0.015, 0.0025],
"generate_electrode_images": true,
"generate_stimpair_images": true,
"generate_matrix_images": true
}
}
```
## Acknowledgements
- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)
- Local extremum detection method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar
- Dependencies:
- IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)
- BIDS-validator (https://github.com/bids-standard/bids-validator)
- NumPy
- SciPy
- Matplotlib
- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes
Raw data
{
"_id": null,
"home_page": "",
"name": "erdetect",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "",
"keywords": "evoked response,detection,ieeg,n1,SPES,CCEP",
"author": "",
"author_email": "Max van den Boom <m.a.vandenboom84@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/d1/f9/54481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4/erdetect-2.5.0.tar.gz",
"platform": null,
"description": "# Evoked Response Detection\r\nA python package and docker application for the automatic detection of evoked responses in SPES/CCEP data\r\n\r\n## Python Usage\r\n\r\n1. First install ERdetect, in the command-line run:\r\n```\r\npip install erdetect\r\n```\r\n\r\n2. To run:\r\n- a) With a graphical user interface:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ --gui\r\n```\r\n\r\n- b) From the commandline:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\n\r\n- c) To process a subset directly in a python script:\r\n```\r\nimport erdetect\r\nerdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')\r\n```\r\n\r\n## Docker Usage\r\n\r\nTo launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:\r\n\r\n```\r\ndocker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\nFor example, to run an analysis, type:\r\n\r\n```\r\ndocker run -ti --rm \\\r\n-v /local_bids_data_root/:/data \\\r\n-v /local_output_path/:/output \\\r\nmultimodalneuro/erdetect /data /output --participant_label 01\r\n```\r\n\r\n\r\n\r\n## Configure detection\r\nFrom the command-line, a JSON file can be passed using the ```--config_filepath [JSON_FILEPATH]``` parameter to adjust the preprocessing, the evoked response detection and the visualization settings.\r\nAn example JSON containing the standard settings looks as follows:\r\n```\r\n{\r\n \"preprocess\": {\r\n \"high_pass\": false,\r\n \"line_noise_removal\": \"off\",\r\n \"early_re_referencing\": {\r\n \"enabled\": false,\r\n \"method\": \"CAR\",\r\n \"stim_excl_epoch\": [-1.0, 2.0]\r\n }\r\n },\r\n\t\r\n \"trials\": {\r\n \"trial_epoch\": [-1.0, 2.0],\r\n \"out_of_bounds_handling\": \"first_last_only\",\r\n \"baseline_epoch\": [-0.5, -0.02],\r\n \"baseline_norm\": \"median\",\r\n \"concat_bidirectional_pairs\": true,\r\n \"minimum_stimpair_trials\": 5\r\n },\r\n\r\n \"channels\": {\r\n \"measured_types\": [\"ECOG\", \"SEEG\", \"DBS\"],\r\n \"stim_types\": [\"ECOG\", \"SEEG\", \"DBS\"]\r\n },\r\n\r\n \"detection\": {\r\n \"negative\": true,\r\n \"positive\": false,\r\n \"peak_search_epoch\": [ 0, 0.5],\r\n \"response_search_epoch\": [ 0.009, 0.09],\r\n \"method\": \"std_base\",\r\n \"std_base\": {\r\n \"baseline_epoch\": [-1, -0.1],\r\n \"baseline_threshold_factor\": 3.4\r\n }\r\n },\r\n\r\n \"visualization\": {\r\n \"negative\": true,\r\n \"positive\": false,\r\n \"x_axis_epoch\": [-0.2, 1],\r\n \"blank_stim_epoch\": [-0.015, 0.0025],\r\n \"generate_electrode_images\": true,\r\n \"generate_stimpair_images\": true,\r\n \"generate_matrix_images\": true\r\n }\r\n}\r\n```\r\n\r\n\r\n## Acknowledgements\r\n\r\n- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)\r\n- Local extremum detection method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar\r\n- Dependencies:\r\n - IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)\r\n - BIDS-validator (https://github.com/bids-standard/bids-validator)\r\n - NumPy\r\n - SciPy\r\n - Matplotlib\r\n\r\n- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes\r\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "A package for the automatic detection of evoked responses in SPES/CCEP data",
"version": "2.5.0",
"project_urls": {
"documentation": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
"homepage": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
"repository": "https://github.com/MultimodalNeuroimagingLab/ERDetect"
},
"split_keywords": [
"evoked response",
"detection",
"ieeg",
"n1",
"spes",
"ccep"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "5ca789bee667764c1f05d5e382022c487e21197154dc17d790f1f8fc9a32cc4d",
"md5": "b0a2ccd6988fd0aa65f70518161a9c4b",
"sha256": "188e6c9c9dcef19de7a157ecf416c0ce001f775ab5eea5b757452994c2c99c48"
},
"downloads": -1,
"filename": "erdetect-2.5.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b0a2ccd6988fd0aa65f70518161a9c4b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 70498,
"upload_time": "2023-09-25T15:00:38",
"upload_time_iso_8601": "2023-09-25T15:00:38.274810Z",
"url": "https://files.pythonhosted.org/packages/5c/a7/89bee667764c1f05d5e382022c487e21197154dc17d790f1f8fc9a32cc4d/erdetect-2.5.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "d1f954481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4",
"md5": "f49d00a36f5a7cd8ec3a3626342530dd",
"sha256": "f4bbfd43654e26180f105b6247e1aa14f8d3fb2af027bb4a72440bfd82db45de"
},
"downloads": -1,
"filename": "erdetect-2.5.0.tar.gz",
"has_sig": false,
"md5_digest": "f49d00a36f5a7cd8ec3a3626342530dd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 66055,
"upload_time": "2023-09-25T15:00:40",
"upload_time_iso_8601": "2023-09-25T15:00:40.337686Z",
"url": "https://files.pythonhosted.org/packages/d1/f9/54481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4/erdetect-2.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-25 15:00:40",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "MultimodalNeuroimagingLab",
"github_project": "ERDetect",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "erdetect"
}