erdetect


Nameerdetect JSON
Version 2.5.0 PyPI version JSON
download
home_page
SummaryA package for the automatic detection of evoked responses in SPES/CCEP data
upload_time2023-09-25 15:00:40
maintainer
docs_urlNone
author
requires_python>=3.8
licenseGPLv3
keywords evoked response detection ieeg n1 spes ccep
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Evoked Response Detection
A python package and docker application for the automatic detection of evoked responses in SPES/CCEP data

## Python Usage

1. First install ERdetect, in the command-line run:
```
pip install erdetect
```

2. To run:
- a) With a graphical user interface:
```
python -m erdetect ~/bids_data ~/output/ --gui
```

- b) From the commandline:
```
python -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```

- c) To process a subset directly in a python script:
```
import erdetect
erdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')
```

## Docker Usage

To launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:

```
docker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]
```
For example, to run an analysis, type:

```
docker run -ti --rm \
-v /local_bids_data_root/:/data \
-v /local_output_path/:/output \
multimodalneuro/erdetect /data /output --participant_label 01
```



## Configure detection
From the command-line, a JSON file can be passed using the ```--config_filepath [JSON_FILEPATH]``` parameter to adjust the preprocessing, the evoked response detection and the visualization settings.
An example JSON containing the standard settings looks as follows:
```
{
    "preprocess": {
        "high_pass":                        false,
        "line_noise_removal":               "off",
        "early_re_referencing": {
            "enabled":                      false,
            "method":                       "CAR",
            "stim_excl_epoch":              [-1.0,        2.0]
        }
    },
	
    "trials": {
        "trial_epoch":                      [-1.0,        2.0],
        "out_of_bounds_handling":           "first_last_only",
        "baseline_epoch":                   [-0.5,      -0.02],
        "baseline_norm":                    "median",
        "concat_bidirectional_pairs":       true,
        "minimum_stimpair_trials":          5
    },

    "channels": {
        "measured_types":                   ["ECOG", "SEEG", "DBS"],
        "stim_types":                       ["ECOG", "SEEG", "DBS"]
    },

    "detection": {
        "negative":                         true,
        "positive":                         false,
        "peak_search_epoch":                [ 0,          0.5],
        "response_search_epoch":            [ 0.009,     0.09],
        "method":                           "std_base",
        "std_base": {
            "baseline_epoch":               [-1,         -0.1],
            "baseline_threshold_factor":    3.4
        }
    },

    "visualization": {
        "negative":                         true,
        "positive":                         false,
        "x_axis_epoch":                     [-0.2,          1],
        "blank_stim_epoch":                 [-0.015,   0.0025],
        "generate_electrode_images":        true,
        "generate_stimpair_images":         true,
        "generate_matrix_images":           true
    }
}
```


## Acknowledgements

- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)
- Local extremum detection method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar
- Dependencies:
  - IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)
  - BIDS-validator (https://github.com/bids-standard/bids-validator)
  - NumPy
  - SciPy
  - Matplotlib

- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "erdetect",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "",
    "keywords": "evoked response,detection,ieeg,n1,SPES,CCEP",
    "author": "",
    "author_email": "Max van den Boom <m.a.vandenboom84@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d1/f9/54481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4/erdetect-2.5.0.tar.gz",
    "platform": null,
    "description": "# Evoked Response Detection\r\nA python package and docker application for the automatic detection of evoked responses in SPES/CCEP data\r\n\r\n## Python Usage\r\n\r\n1. First install ERdetect, in the command-line run:\r\n```\r\npip install erdetect\r\n```\r\n\r\n2. To run:\r\n- a) With a graphical user interface:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ --gui\r\n```\r\n\r\n- b) From the commandline:\r\n```\r\npython -m erdetect ~/bids_data ~/output/ [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\n\r\n- c) To process a subset directly in a python script:\r\n```\r\nimport erdetect\r\nerdetect.process_subset('/bids_data_root/subj-01/ieeg/sub-01_run-06.edf', '/output_path/')\r\n```\r\n\r\n## Docker Usage\r\n\r\nTo launch an instance of the container and analyse data in BIDS format, in the command-line interface/terminal:\r\n\r\n```\r\ndocker run multimodalneuro/erdetect <bids_dir>:/data <output_dir>:/output [--participant_label PARTICIPANT_LABEL [PARTICIPANT_LABEL ...]]\r\n```\r\nFor example, to run an analysis, type:\r\n\r\n```\r\ndocker run -ti --rm \\\r\n-v /local_bids_data_root/:/data \\\r\n-v /local_output_path/:/output \\\r\nmultimodalneuro/erdetect /data /output --participant_label 01\r\n```\r\n\r\n\r\n\r\n## Configure detection\r\nFrom the command-line, a JSON file can be passed using the ```--config_filepath [JSON_FILEPATH]``` parameter to adjust the preprocessing, the evoked response detection and the visualization settings.\r\nAn example JSON containing the standard settings looks as follows:\r\n```\r\n{\r\n    \"preprocess\": {\r\n        \"high_pass\":                        false,\r\n        \"line_noise_removal\":               \"off\",\r\n        \"early_re_referencing\": {\r\n            \"enabled\":                      false,\r\n            \"method\":                       \"CAR\",\r\n            \"stim_excl_epoch\":              [-1.0,        2.0]\r\n        }\r\n    },\r\n\t\r\n    \"trials\": {\r\n        \"trial_epoch\":                      [-1.0,        2.0],\r\n        \"out_of_bounds_handling\":           \"first_last_only\",\r\n        \"baseline_epoch\":                   [-0.5,      -0.02],\r\n        \"baseline_norm\":                    \"median\",\r\n        \"concat_bidirectional_pairs\":       true,\r\n        \"minimum_stimpair_trials\":          5\r\n    },\r\n\r\n    \"channels\": {\r\n        \"measured_types\":                   [\"ECOG\", \"SEEG\", \"DBS\"],\r\n        \"stim_types\":                       [\"ECOG\", \"SEEG\", \"DBS\"]\r\n    },\r\n\r\n    \"detection\": {\r\n        \"negative\":                         true,\r\n        \"positive\":                         false,\r\n        \"peak_search_epoch\":                [ 0,          0.5],\r\n        \"response_search_epoch\":            [ 0.009,     0.09],\r\n        \"method\":                           \"std_base\",\r\n        \"std_base\": {\r\n            \"baseline_epoch\":               [-1,         -0.1],\r\n            \"baseline_threshold_factor\":    3.4\r\n        }\r\n    },\r\n\r\n    \"visualization\": {\r\n        \"negative\":                         true,\r\n        \"positive\":                         false,\r\n        \"x_axis_epoch\":                     [-0.2,          1],\r\n        \"blank_stim_epoch\":                 [-0.015,   0.0025],\r\n        \"generate_electrode_images\":        true,\r\n        \"generate_stimpair_images\":         true,\r\n        \"generate_matrix_images\":           true\r\n    }\r\n}\r\n```\r\n\r\n\r\n## Acknowledgements\r\n\r\n- Written by Max van den Boom (Multimodal Neuroimaging Lab, Mayo Clinic, Rochester MN)\r\n- Local extremum detection method by Dorien van Blooijs & Dora Hermes (2018), with optimized parameters by Jaap van der Aar\r\n- Dependencies:\r\n  - IeegPrep (https://github.com/MultimodalNeuroimagingLab/ieegprep)\r\n  - BIDS-validator (https://github.com/bids-standard/bids-validator)\r\n  - NumPy\r\n  - SciPy\r\n  - Matplotlib\r\n\r\n- This project was funded by the National Institute Of Mental Health of the National Institutes of Health Award Number R01MH122258 to Dora Hermes\r\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "A package for the automatic detection of evoked responses in SPES/CCEP data",
    "version": "2.5.0",
    "project_urls": {
        "documentation": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
        "homepage": "https://github.com/MultimodalNeuroimagingLab/ERDetect",
        "repository": "https://github.com/MultimodalNeuroimagingLab/ERDetect"
    },
    "split_keywords": [
        "evoked response",
        "detection",
        "ieeg",
        "n1",
        "spes",
        "ccep"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5ca789bee667764c1f05d5e382022c487e21197154dc17d790f1f8fc9a32cc4d",
                "md5": "b0a2ccd6988fd0aa65f70518161a9c4b",
                "sha256": "188e6c9c9dcef19de7a157ecf416c0ce001f775ab5eea5b757452994c2c99c48"
            },
            "downloads": -1,
            "filename": "erdetect-2.5.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "b0a2ccd6988fd0aa65f70518161a9c4b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 70498,
            "upload_time": "2023-09-25T15:00:38",
            "upload_time_iso_8601": "2023-09-25T15:00:38.274810Z",
            "url": "https://files.pythonhosted.org/packages/5c/a7/89bee667764c1f05d5e382022c487e21197154dc17d790f1f8fc9a32cc4d/erdetect-2.5.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d1f954481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4",
                "md5": "f49d00a36f5a7cd8ec3a3626342530dd",
                "sha256": "f4bbfd43654e26180f105b6247e1aa14f8d3fb2af027bb4a72440bfd82db45de"
            },
            "downloads": -1,
            "filename": "erdetect-2.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "f49d00a36f5a7cd8ec3a3626342530dd",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 66055,
            "upload_time": "2023-09-25T15:00:40",
            "upload_time_iso_8601": "2023-09-25T15:00:40.337686Z",
            "url": "https://files.pythonhosted.org/packages/d1/f9/54481a88271eb3f1953748abc2fb9908ce6ffb807c8f49175ec7896476a4/erdetect-2.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-25 15:00:40",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "MultimodalNeuroimagingLab",
    "github_project": "ERDetect",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "erdetect"
}
        
Elapsed time: 0.74436s