Name | error-markov JSON |
Version |
0.1.0
JSON |
| download |
home_page | None |
Summary | This is a markov-chain module/package/library/idk and it is dumb |
upload_time | 2025-07-22 08:22:13 |
maintainer | None |
docs_url | None |
author | someone624 |
requires_python | None |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# error_markov
This is just your normal markov-chain module/package/library/what do you call this. If your life is on the line, don't use this, it's unreliable. This **will** not work I can guarantee you. Its here if you want something dumb that you can easily frame as AI.
## Installation
```bash
pip install error_markov
```
## Usage
```python
from error_markov import DumbMarkov
bot = DumbMarkov(order=1) # If order is not specified, it will default to 2
```
### Training
```python
text = "your text here"
bot.train(text)
```
You can also use multiple sentences:
- 1 train command
```python
text = "An apple is existing. Yes an apple is not existing."
bot.train(text)
```
- many train commands
```python
bot.train("An apple is existing.")
bot.train("Yes an apple is not existing.")
```
### Generating
```python
bot.generate()
```
The code above will generate 1 sentence with a max of 50 words. It will start with a random word.
- If you want to start with something specific
```python
inputt = "Yes an"
output = bot.generate(start=inputt)
# To start with something, do:
# start=
```
- If you want to change the max words
```python
max_w = 75
inputt = "Yes an"
output = bot.generate(max_words=max_w, start=inputt)
```
- And then print the output:
```python
print(output)
```
## License
This thing is licensed under the WTFPL.
---
Raw data
{
"_id": null,
"home_page": null,
"name": "error-markov",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "someone624",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/b5/62/77eb3e7c221e83c19cd6a9d765aac8ff7fabc06fdd74a548de5a313810f4/error_markov-0.1.0.tar.gz",
"platform": null,
"description": "# error_markov\nThis is just your normal markov-chain module/package/library/what do you call this. If your life is on the line, don't use this, it's unreliable. This **will** not work I can guarantee you. Its here if you want something dumb that you can easily frame as AI.\n## Installation\n```bash\npip install error_markov\n```\n## Usage\n```python\nfrom error_markov import DumbMarkov\n\nbot = DumbMarkov(order=1) # If order is not specified, it will default to 2\n```\n### Training\n```python\ntext = \"your text here\"\nbot.train(text)\n```\nYou can also use multiple sentences:\n- 1 train command\n```python\ntext = \"An apple is existing. Yes an apple is not existing.\"\nbot.train(text)\n```\n- many train commands\n```python\nbot.train(\"An apple is existing.\")\nbot.train(\"Yes an apple is not existing.\")\n```\n### Generating\n```python\nbot.generate()\n```\nThe code above will generate 1 sentence with a max of 50 words. It will start with a random word.\n- If you want to start with something specific\n```python\ninputt = \"Yes an\"\noutput = bot.generate(start=inputt)\n# To start with something, do:\n# start=\n```\n- If you want to change the max words\n```python\nmax_w = 75\ninputt = \"Yes an\"\noutput = bot.generate(max_words=max_w, start=inputt)\n```\n- And then print the output:\n```python\nprint(output)\n```\n## License\nThis thing is licensed under the WTFPL.\n---",
"bugtrack_url": null,
"license": null,
"summary": "This is a markov-chain module/package/library/idk and it is dumb",
"version": "0.1.0",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "d04c6c683e5dee0c84c8f691349786d7970da7bb6c61d850639188aa1bf47119",
"md5": "9365bb131b582a4f3842a19a67430581",
"sha256": "f6748befe16c3aa43d6ede305b9759949d8aa3755e495b6545b54ca3e1a26b42"
},
"downloads": -1,
"filename": "error_markov-0.1.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "9365bb131b582a4f3842a19a67430581",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 2963,
"upload_time": "2025-07-22T08:22:12",
"upload_time_iso_8601": "2025-07-22T08:22:12.281003Z",
"url": "https://files.pythonhosted.org/packages/d0/4c/6c683e5dee0c84c8f691349786d7970da7bb6c61d850639188aa1bf47119/error_markov-0.1.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "b56277eb3e7c221e83c19cd6a9d765aac8ff7fabc06fdd74a548de5a313810f4",
"md5": "9a738d704e8ad7cb2d233893a8d45e48",
"sha256": "39b8b872001b93dc52c9b0dbaab4594711a60323b5caf911f810efe66cb3f044"
},
"downloads": -1,
"filename": "error_markov-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "9a738d704e8ad7cb2d233893a8d45e48",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2176,
"upload_time": "2025-07-22T08:22:13",
"upload_time_iso_8601": "2025-07-22T08:22:13.613117Z",
"url": "https://files.pythonhosted.org/packages/b5/62/77eb3e7c221e83c19cd6a9d765aac8ff7fabc06fdd74a548de5a313810f4/error_markov-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-22 08:22:13",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "error-markov"
}