esmpi


Nameesmpi JSON
Version 1.0 PyPI version JSON
download
home_pageNone
SummaryCollection of Evolution Strategies optimizers with native MPI parallelization.
upload_time2024-07-25 10:46:01
maintainerNone
docs_urlNone
authorGiacomo Spigler <http://www.spigler.net/giacomo>
requires_python>=3.7
licenseMIT License Copyright (c) [year] [fullname] Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
keywords evolution strategies cma-es mpi openai-es
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
## About

Compact implementation of Evolution Strategies using MPI, together with an MPI-based wrapper for the `cmaes' Python library (only parallelizing the function evaluations). This repository uses part of the code from OpenAI's implementation (https://github.com/openai/evolution-strategies-starter).

Example usage:
```python
from esmpi import ES_MPI

def eval_fn(x):
    time.sleep(0.01)
    return (x[0] - 3) ** 2 + (10 * (x[1] + 2)) ** 2

optimizer = ES_MPI(n_params=2, population_size=16, learning_rate=0.1, sigma=0.02)

for i in range(50):
    fit = optimizer.step(eval_fn)

    if optimizer.is_master == 0:
        print(f"{i}: fitness {np.mean(fit)}, current best params {optimizer.get_parameters()}\n")

```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "esmpi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "evolution strategies, cma-es, mpi, openai-es",
    "author": "Giacomo Spigler <http://www.spigler.net/giacomo>",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/6e/fa/f1d674104bf374479e2766aa8021ef0c87c2ee0386447827108dd3c9a363/esmpi-1.0.tar.gz",
    "platform": null,
    "description": "\n## About\n\nCompact implementation of Evolution Strategies using MPI, together with an MPI-based wrapper for the `cmaes' Python library (only parallelizing the function evaluations). This repository uses part of the code from OpenAI's implementation (https://github.com/openai/evolution-strategies-starter).\n\nExample usage:\n```python\nfrom esmpi import ES_MPI\n\ndef eval_fn(x):\n    time.sleep(0.01)\n    return (x[0] - 3) ** 2 + (10 * (x[1] + 2)) ** 2\n\noptimizer = ES_MPI(n_params=2, population_size=16, learning_rate=0.1, sigma=0.02)\n\nfor i in range(50):\n    fit = optimizer.step(eval_fn)\n\n    if optimizer.is_master == 0:\n        print(f\"{i}: fitness {np.mean(fit)}, current best params {optimizer.get_parameters()}\\n\")\n\n```\n",
    "bugtrack_url": null,
    "license": "MIT License  Copyright (c) [year] [fullname]  Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the \"Software\"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:  The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.  THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ",
    "summary": "Collection of Evolution Strategies optimizers with native MPI parallelization.",
    "version": "1.0",
    "project_urls": {
        "GitHub": "https://github.com/spiglerg/esmpi",
        "Homepage": "https://airlab-tilburg.github.io"
    },
    "split_keywords": [
        "evolution strategies",
        " cma-es",
        " mpi",
        " openai-es"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c97fba8ca1bf74fe097d6fd259a0bc528820d7a410e2752c9f125b58b39eeb66",
                "md5": "2644d87804b8ad39adcea071e3a3bf37",
                "sha256": "2a6c1c0e078ce38c45a71c61e1974305d731bef7312762b033a4cd12743eb299"
            },
            "downloads": -1,
            "filename": "esmpi-1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2644d87804b8ad39adcea071e3a3bf37",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 12374,
            "upload_time": "2024-07-25T10:45:59",
            "upload_time_iso_8601": "2024-07-25T10:45:59.704520Z",
            "url": "https://files.pythonhosted.org/packages/c9/7f/ba8ca1bf74fe097d6fd259a0bc528820d7a410e2752c9f125b58b39eeb66/esmpi-1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6efaf1d674104bf374479e2766aa8021ef0c87c2ee0386447827108dd3c9a363",
                "md5": "5ec909d9d8d5316551dee2d863ec8e4d",
                "sha256": "b266c75487531d68cc504794bafa3d7e8c6a065aa03282f58fb6b0ae511b6720"
            },
            "downloads": -1,
            "filename": "esmpi-1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5ec909d9d8d5316551dee2d863ec8e4d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 11339,
            "upload_time": "2024-07-25T10:46:01",
            "upload_time_iso_8601": "2024-07-25T10:46:01.102532Z",
            "url": "https://files.pythonhosted.org/packages/6e/fa/f1d674104bf374479e2766aa8021ef0c87c2ee0386447827108dd3c9a363/esmpi-1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-25 10:46:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "spiglerg",
    "github_project": "esmpi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "esmpi"
}
        
Elapsed time: 0.47075s