estim8


Nameestim8 JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryA parameter estimation tool for DAE models implemented compliant to the Functional Mockup Interface
upload_time2025-07-11 10:27:38
maintainerNone
docs_urlNone
authorNone
requires_python<3.13,>=3.10.0
licenseAGPLv3
keywords biorpocessmodeling parameter estimation functional mockup interface
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![PyPI version](https://img.shields.io/pypi/v/estim8)](https://pypi.org/project/estim8/)
[![pipeline](https://github.com/jubiotech/estim8/workflows/pipeline/badge.svg)](https://github.com/JuBiotech/estim8/actions)
[![coverage](https://codecov.io/gh/jubiotech/estim8/branch/main/graph/badge.svg)](https://app.codecov.io/gh/JuBiotech/estim8)
[![documentation](https://readthedocs.org/projects/estim8/badge/?version=latest)](https://estim8.readthedocs.io/en/latest)


# ``estim8``
`estim8` is a open source Python toolbox for parameter estimation of dynamic (bio)process models compliant to the _Functional Mockup Interface_ ([FMI](https://fmi-standard.org/)) standard.

It provides a high-level API for simulation and analysis of FMU models, employing ODE or DAE systems written and compiled from third-party software like e.g. the open source modeling environment of [OpenModelica](https://openmodelica.org/). `estim8` offers special functionality with respect to biotechnological applications, for example the modeling of experimental replicates or measurement noise.

For now, it relies on global meta-heuristic optimization algorithms from [`scipy`](https://scipy.org/) and the highly scalable approaches provided by [`pygmo`](https://esa.github.io/pygmo2/) to solve parameter estimation problems, and provides methods for uncertainty quantification.

`estim8` is build using a highly modular object-oriented architecture, making it easily extensible for custom flavoured implementations.

## Installation:
It is highly recommended to use a [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) or preferably a [mamba](https://github.com/mamba-org/mamba) environment manager.

### 1. Installation from PyPI

It is advised to create a fresh virtual environent using ``mamba`` (or ``conda`` alternatively):

```bash
    mamba create --name estim8 python==3.10
    mamba activate estim8
```



**_NOTE:_** Not all dependencies are packaged with the PyPI version. In order to use ``pygmo`` optimizers, the package needs to be installed manually. When using federated setups on Windows, additionally install ``m2w64-toolchain``. These packages need to be installed **before** installing ``estim8``!

```bash
    mamba install -c conda-forge pygmo m2w64-toolchain
```

``estim8`` can then easily be installed using ``pip``:

```bash
    pip install estim8
```


### 2 Development Installation
Download the [source code repository](https://github.com/JuBiotech/estim8) to your computer, best by using [`git`](https://git-scm.com/):
1. navigate to the directory of your computer where you want the repository to be located
2. open a terminal and run `git clone https://github.com/JuBiotech/estim8.git`
3. change into the dowloaded directory `cd estim8`


#### Setting up the environment
It is advised to create a fresh virtual environent:
```bash
conda create --name <env_name>
conda activate <env_name>
conda env update --name <env_name> --file environment.yml
```

#### Importing estim8
To get the most recent version, open a terminal in the repository and run:
```bash
git pull
```

In Python, add the following lines ath the top of your code. Don't forget to adjust the path.
 ```Python
 import sys
 sys.path.append('path/to/repo')
 ```



## Documentation
Check out our [documentation](https://estim8.readthedocs.io/en/latest/), where we provide a series of example notebooks.

## Usage and Citing
``estim8`` is licensed under the [GNU Affero General Public License v3.0](https://github.com/JuBiotech/estim8/blob/main/license.md).

A citable publication is coming soon.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "estim8",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.13,>=3.10.0",
    "maintainer_email": null,
    "keywords": "Biorpocessmodeling, Parameter estimation, Functional Mockup Interface",
    "author": null,
    "author_email": "Tobias Latour <t.latour@fz-juelich.de>, Daniel Strohmeier <d.strohmeier@fz-juelich.de>",
    "download_url": null,
    "platform": null,
    "description": "[![PyPI version](https://img.shields.io/pypi/v/estim8)](https://pypi.org/project/estim8/)\n[![pipeline](https://github.com/jubiotech/estim8/workflows/pipeline/badge.svg)](https://github.com/JuBiotech/estim8/actions)\n[![coverage](https://codecov.io/gh/jubiotech/estim8/branch/main/graph/badge.svg)](https://app.codecov.io/gh/JuBiotech/estim8)\n[![documentation](https://readthedocs.org/projects/estim8/badge/?version=latest)](https://estim8.readthedocs.io/en/latest)\n\n\n# ``estim8``\n`estim8` is a open source Python toolbox for parameter estimation of dynamic (bio)process models compliant to the _Functional Mockup Interface_ ([FMI](https://fmi-standard.org/)) standard.\n\nIt provides a high-level API for simulation and analysis of FMU models, employing ODE or DAE systems written and compiled from third-party software like e.g. the open source modeling environment of [OpenModelica](https://openmodelica.org/). `estim8` offers special functionality with respect to biotechnological applications, for example the modeling of experimental replicates or measurement noise.\n\nFor now, it relies on global meta-heuristic optimization algorithms from [`scipy`](https://scipy.org/) and the highly scalable approaches provided by [`pygmo`](https://esa.github.io/pygmo2/) to solve parameter estimation problems, and provides methods for uncertainty quantification.\n\n`estim8` is build using a highly modular object-oriented architecture, making it easily extensible for custom flavoured implementations.\n\n## Installation:\nIt is highly recommended to use a [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html) or preferably a [mamba](https://github.com/mamba-org/mamba) environment manager.\n\n### 1. Installation from PyPI\n\nIt is advised to create a fresh virtual environent using ``mamba`` (or ``conda`` alternatively):\n\n```bash\n    mamba create --name estim8 python==3.10\n    mamba activate estim8\n```\n\n\n\n**_NOTE:_** Not all dependencies are packaged with the PyPI version. In order to use ``pygmo`` optimizers, the package needs to be installed manually. When using federated setups on Windows, additionally install ``m2w64-toolchain``. These packages need to be installed **before** installing ``estim8``!\n\n```bash\n    mamba install -c conda-forge pygmo m2w64-toolchain\n```\n\n``estim8`` can then easily be installed using ``pip``:\n\n```bash\n    pip install estim8\n```\n\n\n### 2 Development Installation\nDownload the [source code repository](https://github.com/JuBiotech/estim8) to your computer, best by using [`git`](https://git-scm.com/):\n1. navigate to the directory of your computer where you want the repository to be located\n2. open a terminal and run `git clone https://github.com/JuBiotech/estim8.git`\n3. change into the dowloaded directory `cd estim8`\n\n\n#### Setting up the environment\nIt is advised to create a fresh virtual environent:\n```bash\nconda create --name <env_name>\nconda activate <env_name>\nconda env update --name <env_name> --file environment.yml\n```\n\n#### Importing estim8\nTo get the most recent version, open a terminal in the repository and run:\n```bash\ngit pull\n```\n\nIn Python, add the following lines ath the top of your code. Don't forget to adjust the path.\n ```Python\n import sys\n sys.path.append('path/to/repo')\n ```\n\n\n\n## Documentation\nCheck out our [documentation](https://estim8.readthedocs.io/en/latest/), where we provide a series of example notebooks.\n\n## Usage and Citing\n``estim8`` is licensed under the [GNU Affero General Public License v3.0](https://github.com/JuBiotech/estim8/blob/main/license.md).\n\nA citable publication is coming soon.\n",
    "bugtrack_url": null,
    "license": "AGPLv3",
    "summary": "A parameter estimation tool for DAE models implemented compliant to the Functional Mockup Interface",
    "version": "0.1.1",
    "project_urls": {
        "GitHub": "https://github.com/JuBiotech/estim8"
    },
    "split_keywords": [
        "biorpocessmodeling",
        " parameter estimation",
        " functional mockup interface"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "7f7e6a3296f1c9c8df319375fc7697d3549358d06e9752648ef915381005daee",
                "md5": "1aa27abecdbb6f7592026e83e6d43e1e",
                "sha256": "5a8dd80e7968a7f993a957ce02149a7b3f8b824d0311524c286b918fba83eb30"
            },
            "downloads": -1,
            "filename": "estim8-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1aa27abecdbb6f7592026e83e6d43e1e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.13,>=3.10.0",
            "size": 45405,
            "upload_time": "2025-07-11T10:27:38",
            "upload_time_iso_8601": "2025-07-11T10:27:38.689067Z",
            "url": "https://files.pythonhosted.org/packages/7f/7e/6a3296f1c9c8df319375fc7697d3549358d06e9752648ef915381005daee/estim8-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-07-11 10:27:38",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "JuBiotech",
    "github_project": "estim8",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "estim8"
}
        
Elapsed time: 0.42911s