estnltk-neural


Nameestnltk-neural JSON
Version 1.7.4 PyPI version JSON
download
home_pagehttps://github.com/estnltk/estnltk
SummaryEstNLTK neural -- EstNLTK's linguistic analysis based on neural models
upload_time2025-01-22 13:21:05
maintainerNone
docs_urlNone
authorUniversity of Tartu
requires_python>=3.9
licenseDual License: GPL-2.0 OR Apache-2.0
keywords estonian natural language processing estonian linguistic processing
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            EstNLTK neural -- EstNLTK's linguistic analysis based on neural models
===========================================================================

This package contains EstNLTK's linguistic analysis tools that use neural models:

* bert embeddings tagger;
* bert-based named entity recognition;
* bert-based morphological features tagger and disambiguator;
* GliLem lemmatizer and morphological disambiguator;
* stanza syntax tagger and stanza ensemble syntax tagger;
* pronominal coreference tagger v1 (relies on stanza for input preprocessing);
* [legacy] tensorflow-based neural morphological features tagger ( disambiguator );

Note: these tools require installation of deep learning frameworks (`tensorflow`, `pytorch`), and are demanding for computational resources; they also rely on large models which need to be downloaded separately. 

The EstNLTK project is funded by EKT ([Eesti Keeletehnoloogia Riiklik Programm](https://www.keeletehnoloogia.ee/)).

### Installation

EstNLTK-neural is available as a PyPI wheel:  

```
pip install estnltk_neural
```

And as an Anaconda package:

```
conda install -c estnltk -c conda-forge estnltk_neural
```

Supported Python versions: 3.9+

### Neural models

Models required by neural tools are large, and therefore cannot be distributed with this package. 
However, our tagger classes are implemented in a way that once you create an instance of a neural tagger, you'll be asked  for a permission to download missing models, and if you give the permission, the model will be downloaded (and installed in a proper location) automatically. 
If needed, you can also change the default location where downloaded models will be placed, see [this tutorial](https://github.com/estnltk/estnltk/blob/ce224214244bd903d71283a2f1db2e4697f20e84/tutorials/basics/estnltk_resources.ipynb) for details.

### Documentation

EstNLTK's [NLP component tutorials](https://github.com/estnltk/estnltk/tree/main/tutorials/nlp_pipeline) also cover information about neural taggers:

* [bert embeddings tagger](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/E_embeddings/bert_embeddings_tagger.ipynb);
* [named entity recognition (incl bert-based approaches)](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/D_information_extraction/02_named_entities.ipynb);
* [bert-based morphological features tagger and disambiguator](https://github.com/estnltk/estnltk/blob/b074fefa6597df7d6981b7920ca19a3621afbc0d/tutorials/nlp_pipeline/B_morphology/08_bert_based_morph_tagger.ipynb);
* [GliLem lemmatizer and morphological disambiguator](https://github.com/estnltk/estnltk/blob/b074fefa6597df7d6981b7920ca19a3621afbc0d/tutorials/nlp_pipeline/B_morphology/08_glilem_lemmatizer_and_disambiguator.ipynb);
* [stanza-based syntax taggers](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/C_syntax/03_syntactic_analysis_with_stanza.ipynb);
* [pronominal coreference tagger v1](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/D_information_extraction/04_pronominal_coreference.ipynb);
* [\[legacy\] tensorflow-based neural morphological features tagger ( disambiguator )](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/B_morphology/08_neural_morph_tagger_py37.ipynb)


### Source

The source of the last release is available at the [main branch](https://github.com/estnltk/estnltk/tree/main/estnltk_neural).

## License

EstNLTK-neural is released under dual license - either GNU General Public License v2.0 or Apache 2.0 License. 

EstNLTK-neural's GliLem lemmatizer and morphological disambiguator contains code that is licensed under Mozilla Public License 2.0 (MPL 2.0).

(C) University of Tartu (unless specified otherwise in the file headers)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/estnltk/estnltk",
    "name": "estnltk-neural",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "Estonian natural language processing, Estonian linguistic processing",
    "author": "University of Tartu",
    "author_email": "Siim Orasmaa <siim.orasmaa@ut.ee>, Sven Laur <swen@math.ut.ee>, Paul Tammo <paul.tammo@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/41/f7/7781c4498b30a88c5e93f3f70617fd05b074c9d0d7983b3f332249f03de7/estnltk_neural-1.7.4.tar.gz",
    "platform": null,
    "description": "EstNLTK neural -- EstNLTK's linguistic analysis based on neural models\n===========================================================================\n\nThis package contains EstNLTK's linguistic analysis tools that use neural models:\n\n* bert embeddings tagger;\n* bert-based named entity recognition;\n* bert-based morphological features tagger and disambiguator;\n* GliLem lemmatizer and morphological disambiguator;\n* stanza syntax tagger and stanza ensemble syntax tagger;\n* pronominal coreference tagger v1 (relies on stanza for input preprocessing);\n* [legacy] tensorflow-based neural morphological features tagger ( disambiguator );\n\nNote: these tools require installation of deep learning frameworks (`tensorflow`, `pytorch`), and are demanding for computational resources; they also rely on large models which need to be downloaded separately. \n\nThe EstNLTK project is funded by EKT ([Eesti Keeletehnoloogia Riiklik Programm](https://www.keeletehnoloogia.ee/)).\n\n### Installation\n\nEstNLTK-neural is available as a PyPI wheel:  \n\n```\npip install estnltk_neural\n```\n\nAnd as an Anaconda package:\n\n```\nconda install -c estnltk -c conda-forge estnltk_neural\n```\n\nSupported Python versions: 3.9+\n\n### Neural models\n\nModels required by neural tools are large, and therefore cannot be distributed with this package. \nHowever, our tagger classes are implemented in a way that once you create an instance of a neural tagger, you'll be asked  for a permission to download missing models, and if you give the permission, the model will be downloaded (and installed in a proper location) automatically. \nIf needed, you can also change the default location where downloaded models will be placed, see [this tutorial](https://github.com/estnltk/estnltk/blob/ce224214244bd903d71283a2f1db2e4697f20e84/tutorials/basics/estnltk_resources.ipynb) for details.\n\n### Documentation\n\nEstNLTK's [NLP component tutorials](https://github.com/estnltk/estnltk/tree/main/tutorials/nlp_pipeline) also cover information about neural taggers:\n\n* [bert embeddings tagger](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/E_embeddings/bert_embeddings_tagger.ipynb);\n* [named entity recognition (incl bert-based approaches)](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/D_information_extraction/02_named_entities.ipynb);\n* [bert-based morphological features tagger and disambiguator](https://github.com/estnltk/estnltk/blob/b074fefa6597df7d6981b7920ca19a3621afbc0d/tutorials/nlp_pipeline/B_morphology/08_bert_based_morph_tagger.ipynb);\n* [GliLem lemmatizer and morphological disambiguator](https://github.com/estnltk/estnltk/blob/b074fefa6597df7d6981b7920ca19a3621afbc0d/tutorials/nlp_pipeline/B_morphology/08_glilem_lemmatizer_and_disambiguator.ipynb);\n* [stanza-based syntax taggers](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/C_syntax/03_syntactic_analysis_with_stanza.ipynb);\n* [pronominal coreference tagger v1](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/D_information_extraction/04_pronominal_coreference.ipynb);\n* [\\[legacy\\] tensorflow-based neural morphological features tagger ( disambiguator )](https://github.com/estnltk/estnltk/blob/main/tutorials/nlp_pipeline/B_morphology/08_neural_morph_tagger_py37.ipynb)\n\n\n### Source\n\nThe source of the last release is available at the [main branch](https://github.com/estnltk/estnltk/tree/main/estnltk_neural).\n\n## License\n\nEstNLTK-neural is released under dual license - either GNU General Public License v2.0 or Apache 2.0 License. \n\nEstNLTK-neural's GliLem lemmatizer and morphological disambiguator contains code that is licensed under Mozilla Public License 2.0 (MPL 2.0).\n\n(C) University of Tartu (unless specified otherwise in the file headers)\n",
    "bugtrack_url": null,
    "license": "Dual License: GPL-2.0 OR Apache-2.0",
    "summary": "EstNLTK neural -- EstNLTK's linguistic analysis based on neural models",
    "version": "1.7.4",
    "project_urls": {
        "Homepage": "https://github.com/estnltk/estnltk",
        "changelog": "https://github.com/estnltk/estnltk/blob/main/CHANGELOG.md",
        "documentation": "https://github.com/estnltk/estnltk/tree/main/tutorials",
        "repository": "https://github.com/estnltk/estnltk/tree/main/estnltk_neural"
    },
    "split_keywords": [
        "estonian natural language processing",
        " estonian linguistic processing"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "40519dd1684a087506c9942312ec3b8e5e03e37968b2b661d38d1edf7a362516",
                "md5": "0f6ad3b6aef499b9308dd69d1ec908d5",
                "sha256": "e604c8ee45723e20d0acd056de9639214fbab820a1773e05caa8e441e97ed072"
            },
            "downloads": -1,
            "filename": "estnltk_neural-1.7.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0f6ad3b6aef499b9308dd69d1ec908d5",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 206266,
            "upload_time": "2025-01-22T13:21:03",
            "upload_time_iso_8601": "2025-01-22T13:21:03.498546Z",
            "url": "https://files.pythonhosted.org/packages/40/51/9dd1684a087506c9942312ec3b8e5e03e37968b2b661d38d1edf7a362516/estnltk_neural-1.7.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "41f77781c4498b30a88c5e93f3f70617fd05b074c9d0d7983b3f332249f03de7",
                "md5": "3744ba2f7db5085359d92f06f2a7551b",
                "sha256": "80934ede0525657e13a5b7c4aa9b153c5f1e131160656f6193d548766650040b"
            },
            "downloads": -1,
            "filename": "estnltk_neural-1.7.4.tar.gz",
            "has_sig": false,
            "md5_digest": "3744ba2f7db5085359d92f06f2a7551b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 170801,
            "upload_time": "2025-01-22T13:21:05",
            "upload_time_iso_8601": "2025-01-22T13:21:05.177331Z",
            "url": "https://files.pythonhosted.org/packages/41/f7/7781c4498b30a88c5e93f3f70617fd05b074c9d0d7983b3f332249f03de7/estnltk_neural-1.7.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-22 13:21:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "estnltk",
    "github_project": "estnltk",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "estnltk-neural"
}
        
Elapsed time: 0.47185s