evallite


Nameevallite JSON
Version 0.2.0 PyPI version JSON
download
home_pagehttps://github.com/yourusername/pyopengenai
SummaryA powerful web content fetcher and processor
upload_time2024-11-09 07:13:21
maintainerNone
docs_urlNone
authorKammari Santhosh
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EvalLite 🚀

[![PyPI version](https://badge.fury.io/py/evallite.svg)](https://badge.fury.io/py/evallite)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python Versions](https://img.shields.io/pypi/pyversions/evallite.svg)](https://pypi.org/project/evallite/)

An efficient, zero-cost LLM evaluation framework combining the simplicity of [DeepEval](https://github.com/confident-ai/deepeval) with the power of free Hugging Face models through [AILite](https://github.com/yourusername/ailite).

[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)

## 🌟 Key Features

- **Zero-Cost Evaluation**: Leverage free Hugging Face models for LLM evaluation
- **Simple Integration**: Drop-in replacement for DeepEval's evaluation capabilities
- **Extensive Model Support**: Access to leading open-source models including:
  - Meta Llama 3.1 70B Instruct
  - Qwen 2.5 72B Instruct
  - Mistral Nemo Instruct
  - Phi-3.5 Mini Instruct
  - And more!
- **Comprehensive Metrics**: Full compatibility with DeepEval's evaluation metrics
- **Async Support**: Built-in asynchronous evaluation capabilities

## 📥 Installation

```bash
pip install evallite
```

## 🚀 Quick Start

Here's a simple example to get you started with EvalLite:

```python
from evallite import (
    assert_test,
    EvalLiteModel,
    LLMTestCase,
    evaluate,
    AnswerRelevancyMetric
)

# Initialize metric with a specific model
answer_relevancy_metric = AnswerRelevancyMetric(
    threshold=0.7,
    model=EvalLiteModel(model="microsoft/Phi-3.5-mini-instruct")
)

# Create a test case
test_case = LLMTestCase(
    input="What if these shoes don't fit?",
    actual_output="We offer a 30-day full refund at no extra costs.",
    retrieval_context=["All customers are eligible for a 30 day full refund at no extra costs."]
)

# Run evaluation
evaluate([test_case], [answer_relevancy_metric])
```

## 🔧 Available Models

EvalLite supports several powerful open-source models:

```python
from evallite import EvalLiteModel

# Available model options
models = [
    'meta-llama/Meta-Llama-3.1-70B-Instruct',
    'CohereForAI/c4ai-command-r-plus-08-2024',
    'Qwen/Qwen2.5-72B-Instruct',
    'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',
    'meta-llama/Llama-3.2-11B-Vision-Instruct',
    'NousResearch/Hermes-3-Llama-3.1-8B',
    'mistralai/Mistral-Nemo-Instruct-2407',
    'microsoft/Phi-3.5-mini-instruct'
]

# Initialize with specific model
evaluator = EvalLiteModel(model='microsoft/Phi-3.5-mini-instruct')
```

## 📊 Advanced Usage

### Custom Schema Support

EvalLite supports custom response schemas using Pydantic models:

```python
from pydantic import BaseModel
from typing import List

class Statements(BaseModel):
    statements: List[str]

# Use with schema
result = evaluator.generate(
    prompt="List three facts about climate change",
    schema=Statements
)
```

### Async Evaluation

```python
async def evaluate_async():
    response = await evaluator.a_generate(
        prompt="What is the capital of France?",
        schema=Statements
    )
    return response
```

### Batch Evaluation

```python
from evallite import EvaluationDataset

# Create multiple test cases
test_cases = [
    LLMTestCase(
        input="Question 1",
        actual_output="Answer 1",
        retrieval_context=["Context 1"]
    ),
    LLMTestCase(
        input="Question 2",
        actual_output="Answer 2",
        retrieval_context=["Context 2"]
    )
]

# Create dataset
dataset = EvaluationDataset(test_cases=test_cases)

# Evaluate all at once
evaluate(dataset, [answer_relevancy_metric])
```

## 🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/AmazingFeature`)
3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)
4. Push to the branch (`git push origin feature/AmazingFeature`)
5. Open a Pull Request

## 📄 License

This project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.

## 🙏 Acknowledgments

- [DeepEval](https://github.com/confident-ai/deepeval) for the evaluation framework
- [AILite](https://github.com/yourusername/ailite) for providing free model access
- The open-source community for making powerful language models accessible

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yourusername/pyopengenai",
    "name": "evallite",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "Kammari Santhosh",
    "author_email": "Your Name <your.email@example.com>",
    "download_url": "https://files.pythonhosted.org/packages/60/ae/d8550a42798c2874440a12c66296881e4a54d83d9af47691d57f965fe526/evallite-0.2.0.tar.gz",
    "platform": null,
    "description": "# EvalLite \ud83d\ude80\n\n[![PyPI version](https://badge.fury.io/py/evallite.svg)](https://badge.fury.io/py/evallite)\n[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)\n[![Python Versions](https://img.shields.io/pypi/pyversions/evallite.svg)](https://pypi.org/project/evallite/)\n\nAn efficient, zero-cost LLM evaluation framework combining the simplicity of [DeepEval](https://github.com/confident-ai/deepeval) with the power of free Hugging Face models through [AILite](https://github.com/yourusername/ailite).\n\n[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENSE)\n\n## \ud83c\udf1f Key Features\n\n- **Zero-Cost Evaluation**: Leverage free Hugging Face models for LLM evaluation\n- **Simple Integration**: Drop-in replacement for DeepEval's evaluation capabilities\n- **Extensive Model Support**: Access to leading open-source models including:\n  - Meta Llama 3.1 70B Instruct\n  - Qwen 2.5 72B Instruct\n  - Mistral Nemo Instruct\n  - Phi-3.5 Mini Instruct\n  - And more!\n- **Comprehensive Metrics**: Full compatibility with DeepEval's evaluation metrics\n- **Async Support**: Built-in asynchronous evaluation capabilities\n\n## \ud83d\udce5 Installation\n\n```bash\npip install evallite\n```\n\n## \ud83d\ude80 Quick Start\n\nHere's a simple example to get you started with EvalLite:\n\n```python\nfrom evallite import (\n    assert_test,\n    EvalLiteModel,\n    LLMTestCase,\n    evaluate,\n    AnswerRelevancyMetric\n)\n\n# Initialize metric with a specific model\nanswer_relevancy_metric = AnswerRelevancyMetric(\n    threshold=0.7,\n    model=EvalLiteModel(model=\"microsoft/Phi-3.5-mini-instruct\")\n)\n\n# Create a test case\ntest_case = LLMTestCase(\n    input=\"What if these shoes don't fit?\",\n    actual_output=\"We offer a 30-day full refund at no extra costs.\",\n    retrieval_context=[\"All customers are eligible for a 30 day full refund at no extra costs.\"]\n)\n\n# Run evaluation\nevaluate([test_case], [answer_relevancy_metric])\n```\n\n## \ud83d\udd27 Available Models\n\nEvalLite supports several powerful open-source models:\n\n```python\nfrom evallite import EvalLiteModel\n\n# Available model options\nmodels = [\n    'meta-llama/Meta-Llama-3.1-70B-Instruct',\n    'CohereForAI/c4ai-command-r-plus-08-2024',\n    'Qwen/Qwen2.5-72B-Instruct',\n    'nvidia/Llama-3.1-Nemotron-70B-Instruct-HF',\n    'meta-llama/Llama-3.2-11B-Vision-Instruct',\n    'NousResearch/Hermes-3-Llama-3.1-8B',\n    'mistralai/Mistral-Nemo-Instruct-2407',\n    'microsoft/Phi-3.5-mini-instruct'\n]\n\n# Initialize with specific model\nevaluator = EvalLiteModel(model='microsoft/Phi-3.5-mini-instruct')\n```\n\n## \ud83d\udcca Advanced Usage\n\n### Custom Schema Support\n\nEvalLite supports custom response schemas using Pydantic models:\n\n```python\nfrom pydantic import BaseModel\nfrom typing import List\n\nclass Statements(BaseModel):\n    statements: List[str]\n\n# Use with schema\nresult = evaluator.generate(\n    prompt=\"List three facts about climate change\",\n    schema=Statements\n)\n```\n\n### Async Evaluation\n\n```python\nasync def evaluate_async():\n    response = await evaluator.a_generate(\n        prompt=\"What is the capital of France?\",\n        schema=Statements\n    )\n    return response\n```\n\n### Batch Evaluation\n\n```python\nfrom evallite import EvaluationDataset\n\n# Create multiple test cases\ntest_cases = [\n    LLMTestCase(\n        input=\"Question 1\",\n        actual_output=\"Answer 1\",\n        retrieval_context=[\"Context 1\"]\n    ),\n    LLMTestCase(\n        input=\"Question 2\",\n        actual_output=\"Answer 2\",\n        retrieval_context=[\"Context 2\"]\n    )\n]\n\n# Create dataset\ndataset = EvaluationDataset(test_cases=test_cases)\n\n# Evaluate all at once\nevaluate(dataset, [answer_relevancy_metric])\n```\n\n## \ud83e\udd1d Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n1. Fork the repository\n2. Create your feature branch (`git checkout -b feature/AmazingFeature`)\n3. Commit your changes (`git commit -m 'Add some AmazingFeature'`)\n4. Push to the branch (`git push origin feature/AmazingFeature`)\n5. Open a Pull Request\n\n## \ud83d\udcc4 License\n\nThis project is licensed under the Apache 2.0 License - see the [LICENSE](LICENSE) file for details.\n\n## \ud83d\ude4f Acknowledgments\n\n- [DeepEval](https://github.com/confident-ai/deepeval) for the evaluation framework\n- [AILite](https://github.com/yourusername/ailite) for providing free model access\n- The open-source community for making powerful language models accessible\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A powerful web content fetcher and processor",
    "version": "0.2.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/yourusername/pyopengenai/issues",
        "Homepage": "https://github.com/yourusername/pyopengenai"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f9ec3a6cd2d7c5eda07042eb6c5b176f34eddc5cd6748aaf5dcc69ddb9cccb5c",
                "md5": "57c112eb22cda7f42f3a5507624ac698",
                "sha256": "802bbdefce814e7e71897644b2aaba50fff63f37ecd0a9e20dc8f774fd086c2d"
            },
            "downloads": -1,
            "filename": "evallite-0.2.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "57c112eb22cda7f42f3a5507624ac698",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 4877,
            "upload_time": "2024-11-09T07:13:19",
            "upload_time_iso_8601": "2024-11-09T07:13:19.825350Z",
            "url": "https://files.pythonhosted.org/packages/f9/ec/3a6cd2d7c5eda07042eb6c5b176f34eddc5cd6748aaf5dcc69ddb9cccb5c/evallite-0.2.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "60aed8550a42798c2874440a12c66296881e4a54d83d9af47691d57f965fe526",
                "md5": "14252a88030e466f530a208f3f28445e",
                "sha256": "fd50bc45b05c24c9d313568e2782efdddde5d8858616b99e05f5c2a9196f3556"
            },
            "downloads": -1,
            "filename": "evallite-0.2.0.tar.gz",
            "has_sig": false,
            "md5_digest": "14252a88030e466f530a208f3f28445e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 4755,
            "upload_time": "2024-11-09T07:13:21",
            "upload_time_iso_8601": "2024-11-09T07:13:21.962001Z",
            "url": "https://files.pythonhosted.org/packages/60/ae/d8550a42798c2874440a12c66296881e4a54d83d9af47691d57f965fe526/evallite-0.2.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-09 07:13:21",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "yourusername",
    "github_project": "pyopengenai",
    "github_not_found": true,
    "lcname": "evallite"
}
        
Elapsed time: 4.81599s