evolutionary-forest


Nameevolutionary-forest JSON
Version 0.2.4 PyPI version JSON
download
home_pagehttps://github.com/zhenlingcn/evolutionary_forest
SummaryAn open source python library for automated feature engineering based on Genetic Programming
upload_time2024-04-20 10:11:35
maintainerNone
docs_urlNone
authorHengzhe Zhang
requires_python>=3.6
licenseBSD license
keywords evolutionary_forest
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ===================
Evolutionary Forest
===================


.. image:: https://img.shields.io/pypi/v/evolutionary_forest.svg
        :target: https://pypi.python.org/pypi/evolutionary_forest

.. image:: https://img.shields.io/travis/com/zhenlingcn/evolutionaryforest.svg
        :target: https://www.travis-ci.com/github/zhenlingcn/EvolutionaryForest

.. image:: https://readthedocs.org/projects/evolutionary-forest/badge/?version=latest
        :target: https://evolutionary-forest.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status


.. image:: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/shield.svg
     :target: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/
     :alt: Updates



An open source python library for automated feature engineering based on Genetic Programming


* Free software: BSD license
* Documentation: https://evolutionary-forest.readthedocs.io.


Introduction
----------------

Feature engineering is a long-standing issue that has plagued machine learning practitioners for many years. Deep learning techniques have significantly reduced the need for manual feature engineering in recent years. However, a critical issue is that the features discovered by deep learning methods are difficult to interpret.

In the domain of interpretable machine learning, genetic programming has demonstrated to be a promising method for automated feature construction, as it can improve the performance of traditional machine learning systems while maintaining similar interpretability. Nonetheless, such a potent method is rarely mentioned by practitioners. We believe that the main reason for this phenomenon is that there is still a lack of a mature package that can automatically build features based on the genetic programming algorithm. As a result, we propose this package with the goal of providing a powerful feature construction tool for enhancing existing state-of-the-art machine learning algorithms, particularly decision-tree based algorithms.

Features
----------------

*   A powerful feature construction tool for generating interpretable machine learning features.
*   A reliable machine learning model has powerful performance on the small dataset.

Installation
--------------------------------
From PyPI:

.. code:: bash

    pip install -U evolutionary_forest

From GitHub (Latest Code):

.. code:: bash

    pip install git+https://github.com/hengzhe-zhang/EvolutionaryForest.git

Supported Algorithms
--------------------------------
* `Evolutionary Forest (TEVC 2021) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/EF.py>`_
* `SR-Forest (TEVC 2023) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/SRForest.py>`_


Example
----------------
An example of usage:

.. code:: Python

    X, y = load_diabetes(return_X_y=True)
    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
    r = EvolutionaryForestRegressor(max_height=3, normalize=True, select='AutomaticLexicase',
                                    gene_num=10, boost_size=100, n_gen=20, n_pop=200, cross_pb=1,
                                    base_learner='Random-DT', verbose=True)
    r.fit(x_train, y_train)
    print(r2_score(y_test, r.predict(x_test)))

An example of improvements brought about by constructed features:

.. image:: https://raw.githubusercontent.com/zhenlingcn/EvolutionaryForest/master/docs/constructed_features.png

Tutorials
----------------
Here are some nodebook examples of using Evolutionary Forest:

* `Regression on Diabetes Dataset`_

.. _Regression on Diabetes Dataset: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb

Documentation
----------------
Tutorial: `English Version`_ | `中文版本`_

.. _English Version: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb
.. _中文版本: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression-CN.md

Credits
---------------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage

Citation
---------------

Please cite our paper if you find it helpful :)

.. code::

    @article{zhang2021evolutionary,
      title={An Evolutionary Forest for Regression},
      author={Zhang, Hengzhe and Zhou, Aimin and Zhang, Hu},
      journal={IEEE Transactions on Evolutionary Computation},
      volume={26},
      number={4},
      pages={735--749},
      year={2021},
      publisher={IEEE}
    }

    @article{zhang2023sr,
      title={SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning Method},
      author={Zhang, Hengzhe and Zhou, Aimin and Chen, Qi and Xue, Bing and Zhang, Mengjie},
      journal={IEEE Transactions on Evolutionary Computation},
      year={2023},
      publisher={IEEE}
    }


=======
History
=======

0.1.0 (2021-05-22)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/zhenlingcn/evolutionary_forest",
    "name": "evolutionary-forest",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "evolutionary_forest",
    "author": "Hengzhe Zhang",
    "author_email": "zhenlingcn@foxmail.com",
    "download_url": "https://files.pythonhosted.org/packages/ab/ab/35b47eeb15a4ff203b3c165caed239923b19c97d6005d600c29c62d83cbd/evolutionary_forest-0.2.4.tar.gz",
    "platform": null,
    "description": "===================\r\nEvolutionary Forest\r\n===================\r\n\r\n\r\n.. image:: https://img.shields.io/pypi/v/evolutionary_forest.svg\r\n        :target: https://pypi.python.org/pypi/evolutionary_forest\r\n\r\n.. image:: https://img.shields.io/travis/com/zhenlingcn/evolutionaryforest.svg\r\n        :target: https://www.travis-ci.com/github/zhenlingcn/EvolutionaryForest\r\n\r\n.. image:: https://readthedocs.org/projects/evolutionary-forest/badge/?version=latest\r\n        :target: https://evolutionary-forest.readthedocs.io/en/latest/?version=latest\r\n        :alt: Documentation Status\r\n\r\n\r\n.. image:: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/shield.svg\r\n     :target: https://pyup.io/repos/github/zhenlingcn/evolutionary_forest/\r\n     :alt: Updates\r\n\r\n\r\n\r\nAn open source python library for automated feature engineering based on Genetic Programming\r\n\r\n\r\n* Free software: BSD license\r\n* Documentation: https://evolutionary-forest.readthedocs.io.\r\n\r\n\r\nIntroduction\r\n----------------\r\n\r\nFeature engineering is a long-standing issue that has plagued machine learning practitioners for many years. Deep learning techniques have significantly reduced the need for manual feature engineering in recent years. However, a critical issue is that the features discovered by deep learning methods are difficult to interpret.\r\n\r\nIn the domain of interpretable machine learning, genetic programming has demonstrated to be a promising method for automated feature construction, as it can improve the performance of traditional machine learning systems while maintaining similar interpretability. Nonetheless, such a potent method is rarely mentioned by practitioners. We believe that the main reason for this phenomenon is that there is still a lack of a mature package that can automatically build features based on the genetic programming algorithm. As a result, we propose this package with the goal of providing a powerful feature construction tool for enhancing existing state-of-the-art machine learning algorithms, particularly decision-tree based algorithms.\r\n\r\nFeatures\r\n----------------\r\n\r\n*   A powerful feature construction tool for generating interpretable machine learning features.\r\n*   A reliable machine learning model has powerful performance on the small dataset.\r\n\r\nInstallation\r\n--------------------------------\r\nFrom PyPI:\r\n\r\n.. code:: bash\r\n\r\n    pip install -U evolutionary_forest\r\n\r\nFrom GitHub (Latest Code):\r\n\r\n.. code:: bash\r\n\r\n    pip install git+https://github.com/hengzhe-zhang/EvolutionaryForest.git\r\n\r\nSupported Algorithms\r\n--------------------------------\r\n* `Evolutionary Forest (TEVC 2021) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/EF.py>`_\r\n* `SR-Forest (TEVC 2023) <https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/SRForest.py>`_\r\n\r\n\r\nExample\r\n----------------\r\nAn example of usage:\r\n\r\n.. code:: Python\r\n\r\n    X, y = load_diabetes(return_X_y=True)\r\n    x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\r\n    r = EvolutionaryForestRegressor(max_height=3, normalize=True, select='AutomaticLexicase',\r\n                                    gene_num=10, boost_size=100, n_gen=20, n_pop=200, cross_pb=1,\r\n                                    base_learner='Random-DT', verbose=True)\r\n    r.fit(x_train, y_train)\r\n    print(r2_score(y_test, r.predict(x_test)))\r\n\r\nAn example of improvements brought about by constructed features:\r\n\r\n.. image:: https://raw.githubusercontent.com/zhenlingcn/EvolutionaryForest/master/docs/constructed_features.png\r\n\r\nTutorials\r\n----------------\r\nHere are some nodebook examples of using Evolutionary Forest:\r\n\r\n* `Regression on Diabetes Dataset`_\r\n\r\n.. _Regression on Diabetes Dataset: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb\r\n\r\nDocumentation\r\n----------------\r\nTutorial: `English Version`_ | `\u4e2d\u6587\u7248\u672c`_\r\n\r\n.. _English Version: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression.ipynb\r\n.. _\u4e2d\u6587\u7248\u672c: https://github.com/zhenlingcn/EvolutionaryForest/blob/master/tutorial/diabetes_regression-CN.md\r\n\r\nCredits\r\n---------------\r\n\r\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\r\n\r\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\r\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\r\n\r\nCitation\r\n---------------\r\n\r\nPlease cite our paper if you find it helpful :)\r\n\r\n.. code::\r\n\r\n    @article{zhang2021evolutionary,\r\n      title={An Evolutionary Forest for Regression},\r\n      author={Zhang, Hengzhe and Zhou, Aimin and Zhang, Hu},\r\n      journal={IEEE Transactions on Evolutionary Computation},\r\n      volume={26},\r\n      number={4},\r\n      pages={735--749},\r\n      year={2021},\r\n      publisher={IEEE}\r\n    }\r\n\r\n    @article{zhang2023sr,\r\n      title={SR-Forest: A Genetic Programming based Heterogeneous Ensemble Learning Method},\r\n      author={Zhang, Hengzhe and Zhou, Aimin and Chen, Qi and Xue, Bing and Zhang, Mengjie},\r\n      journal={IEEE Transactions on Evolutionary Computation},\r\n      year={2023},\r\n      publisher={IEEE}\r\n    }\r\n\r\n\r\n=======\r\nHistory\r\n=======\r\n\r\n0.1.0 (2021-05-22)\r\n------------------\r\n\r\n* First release on PyPI.\r\n",
    "bugtrack_url": null,
    "license": "BSD license",
    "summary": "An open source python library for automated feature engineering based on Genetic Programming",
    "version": "0.2.4",
    "project_urls": {
        "Homepage": "https://github.com/zhenlingcn/evolutionary_forest"
    },
    "split_keywords": [
        "evolutionary_forest"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "05b1008f18d171c3faec4e5718b6c18898024655cc2ee299ada7f09ac793b355",
                "md5": "e9eab67b60270aa20694fd2c78fd035f",
                "sha256": "03c2cb3bcdd0eb748fbdf4202a565e5696aaa09e16bdeeb41ff81569996c9a46"
            },
            "downloads": -1,
            "filename": "evolutionary_forest-0.2.4-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e9eab67b60270aa20694fd2c78fd035f",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 156817,
            "upload_time": "2024-04-20T10:11:33",
            "upload_time_iso_8601": "2024-04-20T10:11:33.501835Z",
            "url": "https://files.pythonhosted.org/packages/05/b1/008f18d171c3faec4e5718b6c18898024655cc2ee299ada7f09ac793b355/evolutionary_forest-0.2.4-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "abab35b47eeb15a4ff203b3c165caed239923b19c97d6005d600c29c62d83cbd",
                "md5": "9cdcd785e4aec5aba44eea52bf335657",
                "sha256": "ade02241e3ab4c5c7cfc4a23aa4f8866588235e5240a07d8f98a3cdd63f350d2"
            },
            "downloads": -1,
            "filename": "evolutionary_forest-0.2.4.tar.gz",
            "has_sig": false,
            "md5_digest": "9cdcd785e4aec5aba44eea52bf335657",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 179522,
            "upload_time": "2024-04-20T10:11:35",
            "upload_time_iso_8601": "2024-04-20T10:11:35.928128Z",
            "url": "https://files.pythonhosted.org/packages/ab/ab/35b47eeb15a4ff203b3c165caed239923b19c97d6005d600c29c62d83cbd/evolutionary_forest-0.2.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-04-20 10:11:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "zhenlingcn",
    "github_project": "evolutionary_forest",
    "github_not_found": true,
    "lcname": "evolutionary-forest"
}
        
Elapsed time: 2.67376s