# EVOVAQ [![Made at Quasar!](https://img.shields.io/badge/Unina-%20QuasarLab-blue)](http://quasar.unina.it) [![Made at Quasar!](https://img.shields.io/badge/Documentation-%20Readthedocs-brightgreen)](https://evovaq.readthedocs.io/en/latest/index.html)
**EVOlutionary algorithms-based toolbox for VAriational Quantum circuits (EVOVAQ)** is a novel evolutionary framework designed
to easily train variational quantum circuits through evolutionary techniques, and to have a simple interface between
these algorithms and quantum libraries, such as Qiskit.
**Optimizers in EVOVAQ:**
* Genetic Algorithm
* Differential Evolution
* Memetic Algorithm
* Big Bang Big Crunch
* Particle Swarm Optimization
* CHC Algorithm
* Hill Climbing
## Installation
You can install EVOVAQ via ``pip``:
```bash
pip install evovaq
```
Pip will handle all dependencies automatically and you will always install the latest version.
Raw data
{
"_id": null,
"home_page": "https://github.com/Quasar-UniNA/EVOVAQ",
"name": "evovaq",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "Quantum Computing, Evolutionary Algorithms, Variational Quantum Circuits",
"author": "Angela Chiatto",
"author_email": "angela.chiatto@unina.it",
"download_url": "https://files.pythonhosted.org/packages/09/8f/ef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db/evovaq-1.0.22.tar.gz",
"platform": null,
"description": "# EVOVAQ [![Made at Quasar!](https://img.shields.io/badge/Unina-%20QuasarLab-blue)](http://quasar.unina.it) [![Made at Quasar!](https://img.shields.io/badge/Documentation-%20Readthedocs-brightgreen)](https://evovaq.readthedocs.io/en/latest/index.html)\n\n**EVOlutionary algorithms-based toolbox for VAriational Quantum circuits (EVOVAQ)** is a novel evolutionary framework designed\nto easily train variational quantum circuits through evolutionary techniques, and to have a simple interface between\nthese algorithms and quantum libraries, such as Qiskit.\n\n**Optimizers in EVOVAQ:**\n\n* Genetic Algorithm\n\n* Differential Evolution\n\n* Memetic Algorithm\n\n* Big Bang Big Crunch\n\n* Particle Swarm Optimization\n\n* CHC Algorithm\n\n* Hill Climbing\n\n## Installation\n\nYou can install EVOVAQ via ``pip``:\n\n```bash\npip install evovaq\n```\n\nPip will handle all dependencies automatically and you will always install the latest version.\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "EVOlutionary algorithms toolbox for VAriational Quantum circuits",
"version": "1.0.22",
"project_urls": {
"Homepage": "https://github.com/Quasar-UniNA/EVOVAQ"
},
"split_keywords": [
"quantum computing",
" evolutionary algorithms",
" variational quantum circuits"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "76cbbcd720c15db576381b9b259f82c833ea981dbf52acf36eaf0b64ee87771b",
"md5": "9a448708015fe52e03298352e03b1af6",
"sha256": "52364b7367b7e04ba8eb39984a9ad14727f5b10653db8c9bb59fbda61fabb2fe"
},
"downloads": -1,
"filename": "evovaq-1.0.22-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9a448708015fe52e03298352e03b1af6",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 31237,
"upload_time": "2024-05-13T08:32:04",
"upload_time_iso_8601": "2024-05-13T08:32:04.787779Z",
"url": "https://files.pythonhosted.org/packages/76/cb/bcd720c15db576381b9b259f82c833ea981dbf52acf36eaf0b64ee87771b/evovaq-1.0.22-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "098fef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db",
"md5": "b4499ad8b82c9bab9a09d2ffaaa051fa",
"sha256": "5671aff2398ae7be65161274a22910660a3fca84e521f119df043a071d9cec8f"
},
"downloads": -1,
"filename": "evovaq-1.0.22.tar.gz",
"has_sig": false,
"md5_digest": "b4499ad8b82c9bab9a09d2ffaaa051fa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 19890,
"upload_time": "2024-05-13T08:32:06",
"upload_time_iso_8601": "2024-05-13T08:32:06.179544Z",
"url": "https://files.pythonhosted.org/packages/09/8f/ef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db/evovaq-1.0.22.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-05-13 08:32:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Quasar-UniNA",
"github_project": "EVOVAQ",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "evovaq"
}