evovaq


Nameevovaq JSON
Version 1.0.22 PyPI version JSON
download
home_pagehttps://github.com/Quasar-UniNA/EVOVAQ
SummaryEVOlutionary algorithms toolbox for VAriational Quantum circuits
upload_time2024-05-13 08:32:06
maintainerNone
docs_urlNone
authorAngela Chiatto
requires_pythonNone
licenseMIT
keywords quantum computing evolutionary algorithms variational quantum circuits
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # EVOVAQ [![Made at Quasar!](https://img.shields.io/badge/Unina-%20QuasarLab-blue)](http://quasar.unina.it) [![Made at Quasar!](https://img.shields.io/badge/Documentation-%20Readthedocs-brightgreen)](https://evovaq.readthedocs.io/en/latest/index.html)

**EVOlutionary algorithms-based toolbox for VAriational Quantum circuits (EVOVAQ)** is a novel evolutionary framework designed
to easily train variational quantum circuits through evolutionary techniques, and to have a simple interface between
these algorithms and quantum libraries, such as Qiskit.

**Optimizers in EVOVAQ:**

* Genetic Algorithm

* Differential Evolution

* Memetic Algorithm

* Big Bang Big Crunch

* Particle Swarm Optimization

* CHC Algorithm

* Hill Climbing

## Installation

You can install EVOVAQ via ``pip``:

```bash
pip install evovaq
```

Pip will handle all dependencies automatically and you will always install the latest version.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Quasar-UniNA/EVOVAQ",
    "name": "evovaq",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Quantum Computing, Evolutionary Algorithms, Variational Quantum Circuits",
    "author": "Angela Chiatto",
    "author_email": "angela.chiatto@unina.it",
    "download_url": "https://files.pythonhosted.org/packages/09/8f/ef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db/evovaq-1.0.22.tar.gz",
    "platform": null,
    "description": "# EVOVAQ [![Made at Quasar!](https://img.shields.io/badge/Unina-%20QuasarLab-blue)](http://quasar.unina.it) [![Made at Quasar!](https://img.shields.io/badge/Documentation-%20Readthedocs-brightgreen)](https://evovaq.readthedocs.io/en/latest/index.html)\n\n**EVOlutionary algorithms-based toolbox for VAriational Quantum circuits (EVOVAQ)** is a novel evolutionary framework designed\nto easily train variational quantum circuits through evolutionary techniques, and to have a simple interface between\nthese algorithms and quantum libraries, such as Qiskit.\n\n**Optimizers in EVOVAQ:**\n\n* Genetic Algorithm\n\n* Differential Evolution\n\n* Memetic Algorithm\n\n* Big Bang Big Crunch\n\n* Particle Swarm Optimization\n\n* CHC Algorithm\n\n* Hill Climbing\n\n## Installation\n\nYou can install EVOVAQ via ``pip``:\n\n```bash\npip install evovaq\n```\n\nPip will handle all dependencies automatically and you will always install the latest version.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "EVOlutionary algorithms toolbox for VAriational Quantum circuits",
    "version": "1.0.22",
    "project_urls": {
        "Homepage": "https://github.com/Quasar-UniNA/EVOVAQ"
    },
    "split_keywords": [
        "quantum computing",
        " evolutionary algorithms",
        " variational quantum circuits"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "76cbbcd720c15db576381b9b259f82c833ea981dbf52acf36eaf0b64ee87771b",
                "md5": "9a448708015fe52e03298352e03b1af6",
                "sha256": "52364b7367b7e04ba8eb39984a9ad14727f5b10653db8c9bb59fbda61fabb2fe"
            },
            "downloads": -1,
            "filename": "evovaq-1.0.22-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "9a448708015fe52e03298352e03b1af6",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 31237,
            "upload_time": "2024-05-13T08:32:04",
            "upload_time_iso_8601": "2024-05-13T08:32:04.787779Z",
            "url": "https://files.pythonhosted.org/packages/76/cb/bcd720c15db576381b9b259f82c833ea981dbf52acf36eaf0b64ee87771b/evovaq-1.0.22-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "098fef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db",
                "md5": "b4499ad8b82c9bab9a09d2ffaaa051fa",
                "sha256": "5671aff2398ae7be65161274a22910660a3fca84e521f119df043a071d9cec8f"
            },
            "downloads": -1,
            "filename": "evovaq-1.0.22.tar.gz",
            "has_sig": false,
            "md5_digest": "b4499ad8b82c9bab9a09d2ffaaa051fa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 19890,
            "upload_time": "2024-05-13T08:32:06",
            "upload_time_iso_8601": "2024-05-13T08:32:06.179544Z",
            "url": "https://files.pythonhosted.org/packages/09/8f/ef3ae2d5ed6dff75da866f9449605d6a2f4ba694ff016a661a57ec6631db/evovaq-1.0.22.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-13 08:32:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Quasar-UniNA",
    "github_project": "EVOVAQ",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "evovaq"
}
        
Elapsed time: 4.66661s