exa-py


Nameexa-py JSON
Version 1.15.6 PyPI version JSON
download
home_pageNone
SummaryPython SDK for Exa API.
upload_time2025-09-10 01:36:01
maintainerNone
docs_urlNone
authorExa AI
requires_python>=3.9
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Exa

Exa API in Python

## Installation

```bash
pip install exa_py
```

## Usage

Import the package and initialize the Exa client with your API key:

```python
from exa_py import Exa

exa = Exa(api_key="your-api-key")
```

## Common requests

```python

  # basic search
  results = exa.search("This is a Exa query:")

  # keyword search (non-neural)
  results = exa.search("Google-style query", type="keyword")

  # search with date filters
  results = exa.search("This is a Exa query:", start_published_date="2019-01-01", end_published_date="2019-01-31")

  # search with domain filters
  results = exa.search("This is a Exa query:", include_domains=["www.cnn.com", "www.nytimes.com"])

  # search and get text contents
  results = exa.search_and_contents("This is a Exa query:")

  # search and get contents with contents options
  results = exa.search_and_contents("This is a Exa query:",
                                    text={"include_html_tags": True, "max_characters": 1000})

  # find similar documents
  results = exa.find_similar("https://example.com")

  # find similar excluding source domain
  results = exa.find_similar("https://example.com", exclude_source_domain=True)

  # find similar with contents
  results = exa.find_similar_and_contents("https://example.com", text=True)

  # get text contents
  results = exa.get_contents(["tesla.com"])

  # get contents with contents options
  results = exa.get_contents(["urls"],
                             text={"include_html_tags": True, "max_characters": 1000})

  # basic answer
  response = exa.answer("This is a query to answer a question")

  # answer with full text
  response = exa.answer("This is a query to answer a question", text=True)

  # answer with streaming
  response = exa.stream_answer("This is a query to answer:")

  # Print each chunk as it arrives when using the stream_answer method
  for chunk in response:
    print(chunk, end='', flush=True)

  # research task example – answer a question with citations
  # Example prompt & schema inspired by the TypeScript example.
  QUESTION = (
      "Summarize the history of San Francisco highlighting one or two major events "
      "for each decade from 1850 to 1950"
  )
  OUTPUT_SCHEMA: Dict[str, Any] = {
      "type": "object",
      "required": ["timeline"],
      "properties": {
          "timeline": {
              "type": "array",
              "items": {
                  "type": "object",
                  "required": ["decade", "notableEvents"],
                  "properties": {
                      "decade": {
                          "type": "string",
                          "description": 'Decade label e.g. "1850s"',
                      },
                      "notableEvents": {
                          "type": "string",
                          "description": "A summary of notable events.",
                      },
                  },
              },
          },
      },
  }
  resp = exa.research.create_task(
      instructions=QUESTION,
      model="exa-research",
      output_schema=OUTPUT_SCHEMA,
  )
```


            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "exa-py",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": null,
    "author": "Exa AI",
    "author_email": "hello@exa.ai",
    "download_url": "https://files.pythonhosted.org/packages/91/4c/3eb7c6d80a5b6beb38752210f5c940c70f65464140db33ae261b2a4825bc/exa_py-1.15.6.tar.gz",
    "platform": null,
    "description": "# Exa\n\nExa API in Python\n\n## Installation\n\n```bash\npip install exa_py\n```\n\n## Usage\n\nImport the package and initialize the Exa client with your API key:\n\n```python\nfrom exa_py import Exa\n\nexa = Exa(api_key=\"your-api-key\")\n```\n\n## Common requests\n\n```python\n\n  # basic search\n  results = exa.search(\"This is a Exa query:\")\n\n  # keyword search (non-neural)\n  results = exa.search(\"Google-style query\", type=\"keyword\")\n\n  # search with date filters\n  results = exa.search(\"This is a Exa query:\", start_published_date=\"2019-01-01\", end_published_date=\"2019-01-31\")\n\n  # search with domain filters\n  results = exa.search(\"This is a Exa query:\", include_domains=[\"www.cnn.com\", \"www.nytimes.com\"])\n\n  # search and get text contents\n  results = exa.search_and_contents(\"This is a Exa query:\")\n\n  # search and get contents with contents options\n  results = exa.search_and_contents(\"This is a Exa query:\",\n                                    text={\"include_html_tags\": True, \"max_characters\": 1000})\n\n  # find similar documents\n  results = exa.find_similar(\"https://example.com\")\n\n  # find similar excluding source domain\n  results = exa.find_similar(\"https://example.com\", exclude_source_domain=True)\n\n  # find similar with contents\n  results = exa.find_similar_and_contents(\"https://example.com\", text=True)\n\n  # get text contents\n  results = exa.get_contents([\"tesla.com\"])\n\n  # get contents with contents options\n  results = exa.get_contents([\"urls\"],\n                             text={\"include_html_tags\": True, \"max_characters\": 1000})\n\n  # basic answer\n  response = exa.answer(\"This is a query to answer a question\")\n\n  # answer with full text\n  response = exa.answer(\"This is a query to answer a question\", text=True)\n\n  # answer with streaming\n  response = exa.stream_answer(\"This is a query to answer:\")\n\n  # Print each chunk as it arrives when using the stream_answer method\n  for chunk in response:\n    print(chunk, end='', flush=True)\n\n  # research task example \u2013 answer a question with citations\n  # Example prompt & schema inspired by the TypeScript example.\n  QUESTION = (\n      \"Summarize the history of San Francisco highlighting one or two major events \"\n      \"for each decade from 1850 to 1950\"\n  )\n  OUTPUT_SCHEMA: Dict[str, Any] = {\n      \"type\": \"object\",\n      \"required\": [\"timeline\"],\n      \"properties\": {\n          \"timeline\": {\n              \"type\": \"array\",\n              \"items\": {\n                  \"type\": \"object\",\n                  \"required\": [\"decade\", \"notableEvents\"],\n                  \"properties\": {\n                      \"decade\": {\n                          \"type\": \"string\",\n                          \"description\": 'Decade label e.g. \"1850s\"',\n                      },\n                      \"notableEvents\": {\n                          \"type\": \"string\",\n                          \"description\": \"A summary of notable events.\",\n                      },\n                  },\n              },\n          },\n      },\n  }\n  resp = exa.research.create_task(\n      instructions=QUESTION,\n      model=\"exa-research\",\n      output_schema=OUTPUT_SCHEMA,\n  )\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python SDK for Exa API.",
    "version": "1.15.6",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "929c41f032ef35a44262dfe59eeaa4ee6448c9a86fd3b59dbb7448eec9953858",
                "md5": "f86e309f6d9039bcfc5fde6a60822c2a",
                "sha256": "8bdbe8d9548408f37b895eed7497046bed3e19a84b5f06bf23a540d4e26b636c"
            },
            "downloads": -1,
            "filename": "exa_py-1.15.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f86e309f6d9039bcfc5fde6a60822c2a",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 56456,
            "upload_time": "2025-09-10T01:36:00",
            "upload_time_iso_8601": "2025-09-10T01:36:00.097650Z",
            "url": "https://files.pythonhosted.org/packages/92/9c/41f032ef35a44262dfe59eeaa4ee6448c9a86fd3b59dbb7448eec9953858/exa_py-1.15.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "914c3eb7c6d80a5b6beb38752210f5c940c70f65464140db33ae261b2a4825bc",
                "md5": "2fac808cb11be12ae6b6b1e2c2b3fdfe",
                "sha256": "67bb1c0902956b0e23325cc1f9ee990d21277d77b962a40c8902f5eda2407fff"
            },
            "downloads": -1,
            "filename": "exa_py-1.15.6.tar.gz",
            "has_sig": false,
            "md5_digest": "2fac808cb11be12ae6b6b1e2c2b3fdfe",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 41185,
            "upload_time": "2025-09-10T01:36:01",
            "upload_time_iso_8601": "2025-09-10T01:36:01.679285Z",
            "url": "https://files.pythonhosted.org/packages/91/4c/3eb7c6d80a5b6beb38752210f5c940c70f65464140db33ae261b2a4825bc/exa_py-1.15.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-09-10 01:36:01",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "exa-py"
}
        
Elapsed time: 1.77222s