==============
Explain the DQ
==============
.. image:: https://img.shields.io/pypi/v/explaintheDQ.svg
:target: https://pypi.python.org/pypi/explaintheDQ
.. image:: https://img.shields.io/travis/eas342/explaintheDQ.svg
:target: https://travis-ci.com/eas342/explaintheDQ
.. image:: https://readthedocs.org/projects/explaintheDQ/badge/?version=latest
:target: https://explaintheDQ.readthedocs.io/en/latest/?version=latest
:alt: Documentation Status
This is a simple package that helps explain a DQ value for the DQ extension of JWST data.
* Free software: MIT license
* Documentation: https://explaintheDQ.readthedocs.io.
The Problem
-----------
.. image:: images/example_SCI_ext.png
.. image:: images/example_DQ_ext.png
"SCI": Science extension of a ::code::`_rate.fits` image.
"DQ": Data Quality (DQ) extension of a ::code:`_rate.fits` image.
Example images
This image has a some strange blocks of pixels in a 9x9 grid. If you open the DQ extension of the data, the DQ values in the pixels are marked at 3 and also as 1049603. But what does that mean? The bits are explained here:
https://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags
but what does 1049603 mean?
What this Package Does
-----------------------
This is a bear-bones package to break down the DQ number.
.. code-block:: python
import explaintheDQ
explaintheDQ.DQtab(1049603)
.. code-block:: console
Name Flag Bit Description
---------------- ----- --- -------------------------------------------
DO_NOT_USE True 0 Bad pixel. Do not use.
SATURATED False 1 Pixel saturated during exposure
JUMP_DET False 2 Jump detected during exposure
DROPOUT False 3 Data lost in transmission
OUTLIER False 4 Flagged by outlier detection
PERSISTENCE False 5 High persistence
AD_FLOOR False 6 Below A/D floor
CHARGELOSS False 7 Charge Migration
UNRELIABLE_ERROR False 8 Uncertainty exceeds quoted error
NON_SCIENCE False 9 Pixel not on science portion of detector
DEAD False 10 Dead pixel
HOT False 11 Hot pixel
WARM False 12 Warm pixel
LOW_QE False 13 Low quantum efficiency
RC False 14 RC pixel
TELEGRAPH True 15 Telegraph pixel
NONLINEAR False 16 Pixel highly nonlinear
BAD_REF_PIXEL False 17 Reference pixel cannot be used
NO_FLAT_FIELD False 18 Flat field cannot be measured
NO_GAIN_VALUE False 19 Gain cannot be measured
NO_LIN_CORR False 20 Linearity correction not available
NO_SAT_CHECK False 21 Saturation check not available
UNRELIABLE_BIAS False 22 Bias variance large
UNRELIABLE_DARK False 23 Dark variance large
UNRELIABLE_SLOPE False 24 Slope variance large (i.e., noisy pixel)
UNRELIABLE_FLAT False 25 Flat variance large
OPEN False 26 Open pixel (counts move to adjacent pixels)
ADJ_OPEN False 27 Adjacent to open pixel
UNRELIABLE_RESET False 28 Sensitive to reset anomaly
MSA_FAILED_OPEN False 29 Pixel sees light from failed-open shutter
OTHER_BAD_PIXEL False 30 A catch-all flag
REFERENCE_PIXEL False 31 Pixel is a reference pixel
So the pixel that is NaN in the rate image's SCI extension has the following characteristics.
Credits
-------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2023-11-02)
------------------
* First release on PyPI.
Raw data
{
"_id": null,
"home_page": "https://github.com/eas342/explaintheDQ",
"name": "explaintheDQ",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": "",
"keywords": "explaintheDQ",
"author": "Everett Schlawin",
"author_email": "granfalloontoyballoon@hotmail.com",
"download_url": "https://files.pythonhosted.org/packages/3c/6c/0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2/explaintheDQ-0.1.1.tar.gz",
"platform": null,
"description": "==============\nExplain the DQ\n==============\n\n\n.. image:: https://img.shields.io/pypi/v/explaintheDQ.svg\n :target: https://pypi.python.org/pypi/explaintheDQ\n\n.. image:: https://img.shields.io/travis/eas342/explaintheDQ.svg\n :target: https://travis-ci.com/eas342/explaintheDQ\n\n.. image:: https://readthedocs.org/projects/explaintheDQ/badge/?version=latest\n :target: https://explaintheDQ.readthedocs.io/en/latest/?version=latest\n :alt: Documentation Status\n\n\n\nThis is a simple package that helps explain a DQ value for the DQ extension of JWST data.\n\n\n* Free software: MIT license\n* Documentation: https://explaintheDQ.readthedocs.io.\n\n\nThe Problem\n-----------\n\n.. image:: images/example_SCI_ext.png\n\n.. image:: images/example_DQ_ext.png\n \n\n\"SCI\": Science extension of a ::code::`_rate.fits` image.\n\"DQ\": Data Quality (DQ) extension of a ::code:`_rate.fits` image.\n\nExample images\n\nThis image has a some strange blocks of pixels in a 9x9 grid. If you open the DQ extension of the data, the DQ values in the pixels are marked at 3 and also as 1049603. But what does that mean? The bits are explained here:\nhttps://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags\n\nbut what does 1049603 mean?\n\n\nWhat this Package Does\n-----------------------\nThis is a bear-bones package to break down the DQ number.\n\n.. code-block:: python\n\n import explaintheDQ\n explaintheDQ.DQtab(1049603)\n\n.. code-block:: console\n \n Name Flag Bit Description \n ---------------- ----- --- -------------------------------------------\n DO_NOT_USE True 0 Bad pixel. Do not use.\n SATURATED False 1 Pixel saturated during exposure\n JUMP_DET False 2 Jump detected during exposure\n DROPOUT False 3 Data lost in transmission\n OUTLIER False 4 Flagged by outlier detection\n PERSISTENCE False 5 High persistence\n AD_FLOOR False 6 Below A/D floor\n CHARGELOSS False 7 Charge Migration\n UNRELIABLE_ERROR False 8 Uncertainty exceeds quoted error\n NON_SCIENCE False 9 Pixel not on science portion of detector\n DEAD False 10 Dead pixel\n HOT False 11 Hot pixel\n WARM False 12 Warm pixel\n LOW_QE False 13 Low quantum efficiency\n RC False 14 RC pixel\n TELEGRAPH True 15 Telegraph pixel\n NONLINEAR False 16 Pixel highly nonlinear\n BAD_REF_PIXEL False 17 Reference pixel cannot be used\n NO_FLAT_FIELD False 18 Flat field cannot be measured\n NO_GAIN_VALUE False 19 Gain cannot be measured\n NO_LIN_CORR False 20 Linearity correction not available\n NO_SAT_CHECK False 21 Saturation check not available\n UNRELIABLE_BIAS False 22 Bias variance large\n UNRELIABLE_DARK False 23 Dark variance large\n UNRELIABLE_SLOPE False 24 Slope variance large (i.e., noisy pixel)\n UNRELIABLE_FLAT False 25 Flat variance large\n OPEN False 26 Open pixel (counts move to adjacent pixels)\n ADJ_OPEN False 27 Adjacent to open pixel\n UNRELIABLE_RESET False 28 Sensitive to reset anomaly\n MSA_FAILED_OPEN False 29 Pixel sees light from failed-open shutter\n OTHER_BAD_PIXEL False 30 A catch-all flag\n REFERENCE_PIXEL False 31 Pixel is a reference pixel\n\n\n\nSo the pixel that is NaN in the rate image's SCI extension has the following characteristics.\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n\n=======\nHistory\n=======\n\n0.1.0 (2023-11-02)\n------------------\n\n* First release on PyPI.\n",
"bugtrack_url": null,
"license": "MIT license",
"summary": "explains the JWST DQ value",
"version": "0.1.1",
"project_urls": {
"Homepage": "https://github.com/eas342/explaintheDQ"
},
"split_keywords": [
"explainthedq"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "7ebc72ba7ced7a9e4da03bdff5f3e278704754b95b9f81e8a6d67ef4cf83a09a",
"md5": "0c5b9ac51dc5598b7d2f6abc6d614f69",
"sha256": "f2b062eb733a9620653ba9694cdd2ee3421e43626700d4d4fffc992f70b56d68"
},
"downloads": -1,
"filename": "explaintheDQ-0.1.1-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "0c5b9ac51dc5598b7d2f6abc6d614f69",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": ">=3.6",
"size": 6308,
"upload_time": "2023-11-02T22:14:37",
"upload_time_iso_8601": "2023-11-02T22:14:37.183588Z",
"url": "https://files.pythonhosted.org/packages/7e/bc/72ba7ced7a9e4da03bdff5f3e278704754b95b9f81e8a6d67ef4cf83a09a/explaintheDQ-0.1.1-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3c6c0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2",
"md5": "b0f3400f2c6c5a2526081c3c89d496aa",
"sha256": "c56ec7c2aae4a01a73ccd9b18244b2614e74a35e985cd1ca1f4230633d185e8f"
},
"downloads": -1,
"filename": "explaintheDQ-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "b0f3400f2c6c5a2526081c3c89d496aa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 63893,
"upload_time": "2023-11-02T22:14:39",
"upload_time_iso_8601": "2023-11-02T22:14:39.118286Z",
"url": "https://files.pythonhosted.org/packages/3c/6c/0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2/explaintheDQ-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-11-02 22:14:39",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "eas342",
"github_project": "explaintheDQ",
"travis_ci": true,
"coveralls": false,
"github_actions": false,
"tox": true,
"lcname": "explainthedq"
}