explaintheDQ


NameexplaintheDQ JSON
Version 0.1.1 PyPI version JSON
download
home_pagehttps://github.com/eas342/explaintheDQ
Summaryexplains the JWST DQ value
upload_time2023-11-02 22:14:39
maintainer
docs_urlNone
authorEverett Schlawin
requires_python>=3.6
licenseMIT license
keywords explainthedq
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI
coveralls test coverage No coveralls.
            ==============
Explain the DQ
==============


.. image:: https://img.shields.io/pypi/v/explaintheDQ.svg
        :target: https://pypi.python.org/pypi/explaintheDQ

.. image:: https://img.shields.io/travis/eas342/explaintheDQ.svg
        :target: https://travis-ci.com/eas342/explaintheDQ

.. image:: https://readthedocs.org/projects/explaintheDQ/badge/?version=latest
        :target: https://explaintheDQ.readthedocs.io/en/latest/?version=latest
        :alt: Documentation Status



This is a simple package that helps explain a DQ value for the DQ extension of JWST data.


* Free software: MIT license
* Documentation: https://explaintheDQ.readthedocs.io.


The Problem
-----------

.. image:: images/example_SCI_ext.png

.. image:: images/example_DQ_ext.png
   

"SCI": Science extension of a ::code::`_rate.fits` image.
"DQ": Data Quality (DQ) extension of a ::code:`_rate.fits` image.

Example images

This image has a some strange blocks of pixels in a 9x9 grid. If you open the DQ extension of the data, the DQ values in the pixels are marked at 3 and also as 1049603. But what does that mean? The bits are explained here:
https://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags

but what does 1049603 mean?


What this Package Does
-----------------------
This is a bear-bones package to break down the DQ number.

.. code-block:: python

   import explaintheDQ
   explaintheDQ.DQtab(1049603)

.. code-block:: console
   
         Name        Flag Bit                 Description                
    ---------------- ----- --- -------------------------------------------
          DO_NOT_USE  True   0                      Bad pixel. Do not use.
           SATURATED False   1             Pixel saturated during exposure
            JUMP_DET False   2               Jump detected during exposure
             DROPOUT False   3                   Data lost in transmission
             OUTLIER False   4                Flagged by outlier detection
         PERSISTENCE False   5                            High persistence
            AD_FLOOR False   6                             Below A/D floor
          CHARGELOSS False   7                            Charge Migration
    UNRELIABLE_ERROR False   8            Uncertainty exceeds quoted error
         NON_SCIENCE False   9    Pixel not on science portion of detector
                DEAD False  10                                  Dead pixel
                 HOT False  11                                   Hot pixel
                WARM False  12                                  Warm pixel
              LOW_QE False  13                      Low quantum efficiency
                  RC False  14                                    RC pixel
           TELEGRAPH  True  15                             Telegraph pixel
           NONLINEAR False  16                      Pixel highly nonlinear
       BAD_REF_PIXEL False  17              Reference pixel cannot be used
       NO_FLAT_FIELD False  18               Flat field cannot be measured
       NO_GAIN_VALUE False  19                     Gain cannot be measured
         NO_LIN_CORR False  20          Linearity correction not available
        NO_SAT_CHECK False  21              Saturation check not available
     UNRELIABLE_BIAS False  22                         Bias variance large
     UNRELIABLE_DARK False  23                         Dark variance large
    UNRELIABLE_SLOPE False  24    Slope variance large (i.e., noisy pixel)
     UNRELIABLE_FLAT False  25                         Flat variance large
                OPEN False  26 Open pixel (counts move to adjacent pixels)
            ADJ_OPEN False  27                      Adjacent to open pixel
    UNRELIABLE_RESET False  28                  Sensitive to reset anomaly
     MSA_FAILED_OPEN False  29   Pixel sees light from failed-open shutter
     OTHER_BAD_PIXEL False  30                            A catch-all flag
     REFERENCE_PIXEL False  31                  Pixel is a reference pixel



So the pixel that is NaN in the rate image's SCI extension has the following characteristics.

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage


=======
History
=======

0.1.0 (2023-11-02)
------------------

* First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/eas342/explaintheDQ",
    "name": "explaintheDQ",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "explaintheDQ",
    "author": "Everett Schlawin",
    "author_email": "granfalloontoyballoon@hotmail.com",
    "download_url": "https://files.pythonhosted.org/packages/3c/6c/0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2/explaintheDQ-0.1.1.tar.gz",
    "platform": null,
    "description": "==============\nExplain the DQ\n==============\n\n\n.. image:: https://img.shields.io/pypi/v/explaintheDQ.svg\n        :target: https://pypi.python.org/pypi/explaintheDQ\n\n.. image:: https://img.shields.io/travis/eas342/explaintheDQ.svg\n        :target: https://travis-ci.com/eas342/explaintheDQ\n\n.. image:: https://readthedocs.org/projects/explaintheDQ/badge/?version=latest\n        :target: https://explaintheDQ.readthedocs.io/en/latest/?version=latest\n        :alt: Documentation Status\n\n\n\nThis is a simple package that helps explain a DQ value for the DQ extension of JWST data.\n\n\n* Free software: MIT license\n* Documentation: https://explaintheDQ.readthedocs.io.\n\n\nThe Problem\n-----------\n\n.. image:: images/example_SCI_ext.png\n\n.. image:: images/example_DQ_ext.png\n   \n\n\"SCI\": Science extension of a ::code::`_rate.fits` image.\n\"DQ\": Data Quality (DQ) extension of a ::code:`_rate.fits` image.\n\nExample images\n\nThis image has a some strange blocks of pixels in a 9x9 grid. If you open the DQ extension of the data, the DQ values in the pixels are marked at 3 and also as 1049603. But what does that mean? The bits are explained here:\nhttps://jwst-pipeline.readthedocs.io/en/latest/jwst/references_general/references_general.html#data-quality-flags\n\nbut what does 1049603 mean?\n\n\nWhat this Package Does\n-----------------------\nThis is a bear-bones package to break down the DQ number.\n\n.. code-block:: python\n\n   import explaintheDQ\n   explaintheDQ.DQtab(1049603)\n\n.. code-block:: console\n   \n         Name        Flag Bit                 Description                \n    ---------------- ----- --- -------------------------------------------\n          DO_NOT_USE  True   0                      Bad pixel. Do not use.\n           SATURATED False   1             Pixel saturated during exposure\n            JUMP_DET False   2               Jump detected during exposure\n             DROPOUT False   3                   Data lost in transmission\n             OUTLIER False   4                Flagged by outlier detection\n         PERSISTENCE False   5                            High persistence\n            AD_FLOOR False   6                             Below A/D floor\n          CHARGELOSS False   7                            Charge Migration\n    UNRELIABLE_ERROR False   8            Uncertainty exceeds quoted error\n         NON_SCIENCE False   9    Pixel not on science portion of detector\n                DEAD False  10                                  Dead pixel\n                 HOT False  11                                   Hot pixel\n                WARM False  12                                  Warm pixel\n              LOW_QE False  13                      Low quantum efficiency\n                  RC False  14                                    RC pixel\n           TELEGRAPH  True  15                             Telegraph pixel\n           NONLINEAR False  16                      Pixel highly nonlinear\n       BAD_REF_PIXEL False  17              Reference pixel cannot be used\n       NO_FLAT_FIELD False  18               Flat field cannot be measured\n       NO_GAIN_VALUE False  19                     Gain cannot be measured\n         NO_LIN_CORR False  20          Linearity correction not available\n        NO_SAT_CHECK False  21              Saturation check not available\n     UNRELIABLE_BIAS False  22                         Bias variance large\n     UNRELIABLE_DARK False  23                         Dark variance large\n    UNRELIABLE_SLOPE False  24    Slope variance large (i.e., noisy pixel)\n     UNRELIABLE_FLAT False  25                         Flat variance large\n                OPEN False  26 Open pixel (counts move to adjacent pixels)\n            ADJ_OPEN False  27                      Adjacent to open pixel\n    UNRELIABLE_RESET False  28                  Sensitive to reset anomaly\n     MSA_FAILED_OPEN False  29   Pixel sees light from failed-open shutter\n     OTHER_BAD_PIXEL False  30                            A catch-all flag\n     REFERENCE_PIXEL False  31                  Pixel is a reference pixel\n\n\n\nSo the pixel that is NaN in the rate image's SCI extension has the following characteristics.\n\nCredits\n-------\n\nThis package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.\n\n.. _Cookiecutter: https://github.com/audreyr/cookiecutter\n.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage\n\n\n=======\nHistory\n=======\n\n0.1.0 (2023-11-02)\n------------------\n\n* First release on PyPI.\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "explains the JWST DQ value",
    "version": "0.1.1",
    "project_urls": {
        "Homepage": "https://github.com/eas342/explaintheDQ"
    },
    "split_keywords": [
        "explainthedq"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7ebc72ba7ced7a9e4da03bdff5f3e278704754b95b9f81e8a6d67ef4cf83a09a",
                "md5": "0c5b9ac51dc5598b7d2f6abc6d614f69",
                "sha256": "f2b062eb733a9620653ba9694cdd2ee3421e43626700d4d4fffc992f70b56d68"
            },
            "downloads": -1,
            "filename": "explaintheDQ-0.1.1-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "0c5b9ac51dc5598b7d2f6abc6d614f69",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.6",
            "size": 6308,
            "upload_time": "2023-11-02T22:14:37",
            "upload_time_iso_8601": "2023-11-02T22:14:37.183588Z",
            "url": "https://files.pythonhosted.org/packages/7e/bc/72ba7ced7a9e4da03bdff5f3e278704754b95b9f81e8a6d67ef4cf83a09a/explaintheDQ-0.1.1-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3c6c0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2",
                "md5": "b0f3400f2c6c5a2526081c3c89d496aa",
                "sha256": "c56ec7c2aae4a01a73ccd9b18244b2614e74a35e985cd1ca1f4230633d185e8f"
            },
            "downloads": -1,
            "filename": "explaintheDQ-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "b0f3400f2c6c5a2526081c3c89d496aa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 63893,
            "upload_time": "2023-11-02T22:14:39",
            "upload_time_iso_8601": "2023-11-02T22:14:39.118286Z",
            "url": "https://files.pythonhosted.org/packages/3c/6c/0b7684c5e017d4bf93953b94a703fa5805d93c90f100c869d458e3d7f1d2/explaintheDQ-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-02 22:14:39",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "eas342",
    "github_project": "explaintheDQ",
    "travis_ci": true,
    "coveralls": false,
    "github_actions": false,
    "tox": true,
    "lcname": "explainthedq"
}
        
Elapsed time: 0.58179s