ezstat


Nameezstat JSON
Version 2.3 PyPI version JSON
download
home_pagehttps://github.com/Freakwill/ezstat
SummaryOOP For eazy statistics, inspired by `Statistics` class of the lib `deap` but more user-friendly
upload_time2023-12-05 06:12:49
maintainer
docs_urlNone
authorWilliam Song
requires_python>=3.7,<4.0
licenseMIT
keywords statistics genetic algorithm
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Ezstat: Easy statistics



OO For easy statistics, inspired by `Statistics` class of [deap](https://deap.readthedocs.io/en/master/index.html)

It is really easy and awesome! Believe me!

![](logo.jpg)

## Introduction

`ezstat` is built for easy statistics, esp. for the history of iterations.

### Statistics
The main class `Statistics` just extends `dict{str:function}` (called statistics dict), function here will act on the object of statistics. The values of dict have not to be a function, if it is a string, then the object of method with the same name is applied.

Frankly, It just borrows the idea from the `Statistics` class of [deap](https://deap.readthedocs.io/en/master/index.html). But unlike the author of deap, I just create it a subclass of dict, need not define strange methods.

See the following example and function `_call`, the underlying implementation.

### Examples

Example:

```python
>>> import numpy as np

>>> T = np.random.random((100,100)) # samples(one hundrand 100D samples)
>>> stat = Statistics({'mean': np.mean, 'max': 'max', 'shape':'shape'}) # create statistics
>>> print(stat(T))
>>> {'mean': 0.5009150557686407, 'max': 0.5748552862392957, 'shape': (100, 100)}

>>> print(stat(T, split=True)) # split the tuple if it needs
>>> {mean': 0.5009150557686407, 'max': 0.5748552862392957, 'shape[0]': 100, 'shape[1]': 100}
```

```python
# with sub-statistics
s = Statistics({'mean': np.mean,
'extreme': {'max':'max', 'min':np.min},  # as a sub-statistics
'shape':'shape'})
print(s(X))
# dict-valued statistics, equivalent to the above
s = Statistics({'mean': np.mean, 'extreme': lambda x:{'max': np.max(x), 'min': np.min(x)}, 'shape':'shape'})
print(s(X))

#Result: {'mean': 0.49786554518848564, 'extreme[max]': 0.9999761647791217, 'extreme[min]': 0.0001368184546896023, 'shape': (100, 100)}
```

### MappingStatistics
`MappingStatistics` is a subclass of `Statistics`. It only copes with iterable object, and maps the obect to an array by funcional attribute `key`.

Example:

```python
>>> stat = MappingStatistics(key='mean', {'mean':np.mean, 'max':np.max})
>>> print(stat(T))
>>> {'mean': 0.5009150557686407, 'max': 0.5748552862392957}
```

In the exmaple, 'mean', an attribute of T, maps T to a 1D array.

## Advanced Usage

`Statistics` acts on a list/tuple of objects iteratively, gets a series of results,
forming an object of `pandas.DataFrame`. In fact, it is insprited by `Statistics` class of third part lib [deap](https://deap.readthedocs.io/en/master/index.html). In some case, it collects a list of dicts of the statistics result for a series of objects. It is suggested to transform to DataFrame object.

```python
history = pd.DataFrame(columns=stat.keys())
for obj in objs:
    history = history.append(stat(obj), ignore_index=True)
```

## To Do

- [ ]  To define tuple of functions for the value of statistics dict.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Freakwill/ezstat",
    "name": "ezstat",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<4.0",
    "maintainer_email": "",
    "keywords": "Statistics,Genetic Algorithm",
    "author": "William Song",
    "author_email": "30965609+Freakwill@users.noreply.github.com",
    "download_url": "https://files.pythonhosted.org/packages/82/c2/697b6ac2210d04977b0381b329619dc060508f18a7d44616017fd99528d7/ezstat-2.3.tar.gz",
    "platform": null,
    "description": "# Ezstat: Easy statistics\n\n\n\nOO For easy statistics, inspired by `Statistics` class of [deap](https://deap.readthedocs.io/en/master/index.html)\n\nIt is really easy and awesome! Believe me!\n\n![](logo.jpg)\n\n## Introduction\n\n`ezstat` is built for easy statistics, esp. for the history of iterations.\n\n### Statistics\nThe main class `Statistics` just extends `dict{str:function}` (called statistics dict), function here will act on the object of statistics. The values of dict have not to be a function, if it is a string, then the object of method with the same name is applied.\n\nFrankly, It just borrows the idea from the `Statistics` class of [deap](https://deap.readthedocs.io/en/master/index.html). But unlike the author of deap, I just create it a subclass of dict, need not define strange methods.\n\nSee the following example and function `_call`, the underlying implementation.\n\n### Examples\n\nExample:\n\n```python\n>>> import numpy as np\n\n>>> T = np.random.random((100,100)) # samples(one hundrand 100D samples)\n>>> stat = Statistics({'mean': np.mean, 'max': 'max', 'shape':'shape'}) # create statistics\n>>> print(stat(T))\n>>> {'mean': 0.5009150557686407, 'max': 0.5748552862392957, 'shape': (100, 100)}\n\n>>> print(stat(T, split=True)) # split the tuple if it needs\n>>> {mean': 0.5009150557686407, 'max': 0.5748552862392957, 'shape[0]': 100, 'shape[1]': 100}\n```\n\n```python\n# with sub-statistics\ns = Statistics({'mean': np.mean,\n'extreme': {'max':'max', 'min':np.min},  # as a sub-statistics\n'shape':'shape'})\nprint(s(X))\n# dict-valued statistics, equivalent to the above\ns = Statistics({'mean': np.mean, 'extreme': lambda x:{'max': np.max(x), 'min': np.min(x)}, 'shape':'shape'})\nprint(s(X))\n\n#Result: {'mean': 0.49786554518848564, 'extreme[max]': 0.9999761647791217, 'extreme[min]': 0.0001368184546896023, 'shape': (100, 100)}\n```\n\n### MappingStatistics\n`MappingStatistics` is a subclass of `Statistics`. It only copes with iterable object, and maps the obect to an array by funcional attribute `key`.\n\nExample:\n\n```python\n>>> stat = MappingStatistics(key='mean', {'mean':np.mean, 'max':np.max})\n>>> print(stat(T))\n>>> {'mean': 0.5009150557686407, 'max': 0.5748552862392957}\n```\n\nIn the exmaple, 'mean', an attribute of T, maps T to a 1D array.\n\n## Advanced Usage\n\n`Statistics` acts on a list/tuple of objects iteratively, gets a series of results,\nforming an object of `pandas.DataFrame`. In fact, it is insprited by `Statistics` class of third part lib [deap](https://deap.readthedocs.io/en/master/index.html). In some case, it collects a list of dicts of the statistics result for a series of objects. It is suggested to transform to DataFrame object.\n\n```python\nhistory = pd.DataFrame(columns=stat.keys())\nfor obj in objs:\n    history = history.append(stat(obj), ignore_index=True)\n```\n\n## To Do\n\n- [ ]  To define tuple of functions for the value of statistics dict.\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "OOP For eazy statistics, inspired by `Statistics` class of the lib `deap` but more user-friendly",
    "version": "2.3",
    "project_urls": {
        "Homepage": "https://github.com/Freakwill/ezstat",
        "Repository": "https://github.com/Freakwill/ezstat"
    },
    "split_keywords": [
        "statistics",
        "genetic algorithm"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cb5dddfa89a7311bb0860c26ec291060423275138f3221c5466f2ee98afd2146",
                "md5": "89b469dae731e1ef7a834d4f83f48107",
                "sha256": "8356ee125edeab9b45d19c4c9772cca77c13031623894d1f897c9abc073930bb"
            },
            "downloads": -1,
            "filename": "ezstat-2.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "89b469dae731e1ef7a834d4f83f48107",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7,<4.0",
            "size": 4784,
            "upload_time": "2023-12-05T06:12:47",
            "upload_time_iso_8601": "2023-12-05T06:12:47.159828Z",
            "url": "https://files.pythonhosted.org/packages/cb/5d/ddfa89a7311bb0860c26ec291060423275138f3221c5466f2ee98afd2146/ezstat-2.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "82c2697b6ac2210d04977b0381b329619dc060508f18a7d44616017fd99528d7",
                "md5": "1e8c2821e78a22f65efc9ffe5acb7f71",
                "sha256": "520fec56361ea1df42ed2804b2272a37e0f745f390520690bf1cc2e04338cbc6"
            },
            "downloads": -1,
            "filename": "ezstat-2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "1e8c2821e78a22f65efc9ffe5acb7f71",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<4.0",
            "size": 4597,
            "upload_time": "2023-12-05T06:12:49",
            "upload_time_iso_8601": "2023-12-05T06:12:49.430289Z",
            "url": "https://files.pythonhosted.org/packages/82/c2/697b6ac2210d04977b0381b329619dc060508f18a7d44616017fd99528d7/ezstat-2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-05 06:12:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Freakwill",
    "github_project": "ezstat",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "ezstat"
}
        
Elapsed time: 0.20650s