f3dasm-optimize


Namef3dasm-optimize JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttps://github.com/bessagroup/f3dasm_optimize
Summaryf3dasm_optimize: Your one line description of the package
upload_time2025-01-24 13:33:58
maintainerNone
docs_urlNone
authorMartin van der Schelling
requires_python>=3.8
licenseBSD-3-Clause License
keywords keyword1 keyword2 keyword3
VCS
bugtrack_url
requirements f3dasm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            f3dasm_optimize
---------------
*Optimization extension package for the framework for data-driven design \& analysis of structures and materials*

***

[![Python](https://img.shields.io/pypi/pyversions/f3dasm_optimize)](https://www.python.org)
[![pypi](https://img.shields.io/pypi/v/f3dasm_optimize.svg)](https://pypi.org/project/f3dasm_optimize/)
[![GitHub license](https://img.shields.io/badge/license-BSD-blue)](https://github.com/bessagroup/f3dasm_optimize)

[**Docs**](https://f3dasm-optimize.readthedocs.io/en/latest/)
| [**Installation**](https://f3dasm-optimize.readthedocs.io/en/latest/rst_doc_files/getting_started.html)
| [**GitHub**](https://github.com/bessagroup/f3dasm)
| [**PyPI**](https://pypi.org/project/f3dasm-optimize/)

## Summary

Welcome to `f3dasm_optimize`, an optimization extension Python package for data-driven design and analysis of structures and materials.


## Authorship

* Current created and developer: [M.P. van der Schelling](https://github.com/mpvanderschelling/) (M.P.vanderSchelling@tudelft.nl)

The Bessa research group at TU Delft is small... At the moment, we have limited availability to help future users/developers adapting the code to new problems, but we will do our best to help!

## Getting started

The best way to get started is to follow the [installation instructions](https://f3dasm.readthedocs.io/en/latest/rst_doc_files/general/gettingstarted.html) of the `f3dasm` package.

## Referencing

If you use or edit our work, please cite at least one of the appropriate references:

[1] Bessa, M. A., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W., & Liu, W. K. (2017). A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320, 633-667.

[2] Bessa, M. A., & Pellegrino, S. (2018). Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization. International Journal of Solids and Structures, 139, 174-188.

[3] Bessa, M. A., Glowacki, P., & Houlder, M. (2019). Bayesian machine learning in metamaterial design: fragile becomes super-compressible. Advanced Materials, 31(48), 1904845.

[4] Mojtaba, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. (2019). Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52), 26414-26420.

## Community Support

If you find any **issues, bugs or problems** with this template, please use the [GitHub issue tracker](https://github.com/bessagroup/f3dasm_optimize/issues) to report them.

## License

Copyright 2023, Martin van der Schelling

All rights reserved.

This project is licensed under the BSD 3-Clause License. See [LICENSE](https://github.com/bessagroup/f3dasm_optimize/blob/main/LICENSE) for the full license text.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/bessagroup/f3dasm_optimize",
    "name": "f3dasm-optimize",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "keyword1, keyword2, keyword3",
    "author": "Martin van der Schelling",
    "author_email": "M.P.vanderSchelling@tudelft.nl",
    "download_url": "https://files.pythonhosted.org/packages/9e/cb/6cea1bc69055dda59980584ccc7e2383e6999376e74af263139783138143/f3dasm_optimize-2.0.0.tar.gz",
    "platform": null,
    "description": "f3dasm_optimize\n---------------\n*Optimization extension package for the framework for data-driven design \\& analysis of structures and materials*\n\n***\n\n[![Python](https://img.shields.io/pypi/pyversions/f3dasm_optimize)](https://www.python.org)\n[![pypi](https://img.shields.io/pypi/v/f3dasm_optimize.svg)](https://pypi.org/project/f3dasm_optimize/)\n[![GitHub license](https://img.shields.io/badge/license-BSD-blue)](https://github.com/bessagroup/f3dasm_optimize)\n\n[**Docs**](https://f3dasm-optimize.readthedocs.io/en/latest/)\n| [**Installation**](https://f3dasm-optimize.readthedocs.io/en/latest/rst_doc_files/getting_started.html)\n| [**GitHub**](https://github.com/bessagroup/f3dasm)\n| [**PyPI**](https://pypi.org/project/f3dasm-optimize/)\n\n## Summary\n\nWelcome to `f3dasm_optimize`, an optimization extension Python package for data-driven design and analysis of structures and materials.\n\n\n## Authorship\n\n* Current created and developer: [M.P. van der Schelling](https://github.com/mpvanderschelling/) (M.P.vanderSchelling@tudelft.nl)\n\nThe Bessa research group at TU Delft is small... At the moment, we have limited availability to help future users/developers adapting the code to new problems, but we will do our best to help!\n\n## Getting started\n\nThe best way to get started is to follow the [installation instructions](https://f3dasm.readthedocs.io/en/latest/rst_doc_files/general/gettingstarted.html) of the `f3dasm` package.\n\n## Referencing\n\nIf you use or edit our work, please cite at least one of the appropriate references:\n\n[1] Bessa, M. A., Bostanabad, R., Liu, Z., Hu, A., Apley, D. W., Brinson, C., Chen, W., & Liu, W. K. (2017). A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Computer Methods in Applied Mechanics and Engineering, 320, 633-667.\n\n[2] Bessa, M. A., & Pellegrino, S. (2018). Design of ultra-thin shell structures in the stochastic post-buckling range using Bayesian machine learning and optimization. International Journal of Solids and Structures, 139, 174-188.\n\n[3] Bessa, M. A., Glowacki, P., & Houlder, M. (2019). Bayesian machine learning in metamaterial design: fragile becomes super-compressible. Advanced Materials, 31(48), 1904845.\n\n[4] Mojtaba, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., & Bessa, M. A. (2019). Deep learning predicts path-dependent plasticity. Proceedings of the National Academy of Sciences, 116(52), 26414-26420.\n\n## Community Support\n\nIf you find any **issues, bugs or problems** with this template, please use the [GitHub issue tracker](https://github.com/bessagroup/f3dasm_optimize/issues) to report them.\n\n## License\n\nCopyright 2023, Martin van der Schelling\n\nAll rights reserved.\n\nThis project is licensed under the BSD 3-Clause License. See [LICENSE](https://github.com/bessagroup/f3dasm_optimize/blob/main/LICENSE) for the full license text.\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause License",
    "summary": "f3dasm_optimize: Your one line description of the package",
    "version": "2.0.0",
    "project_urls": {
        "Homepage": "https://github.com/bessagroup/f3dasm_optimize"
    },
    "split_keywords": [
        "keyword1",
        " keyword2",
        " keyword3"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "71f296263a4c954d7bbf40fb1a3850e2c94be54f9d59ed46b5fefb6ecb9808af",
                "md5": "a5af4b51fd4f0036191b39436a5faef4",
                "sha256": "1a84e21032786436f3da5df7f09efea77e264b463929ad16a38695989cf52538"
            },
            "downloads": -1,
            "filename": "f3dasm_optimize-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a5af4b51fd4f0036191b39436a5faef4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 14436,
            "upload_time": "2025-01-24T13:33:56",
            "upload_time_iso_8601": "2025-01-24T13:33:56.752430Z",
            "url": "https://files.pythonhosted.org/packages/71/f2/96263a4c954d7bbf40fb1a3850e2c94be54f9d59ed46b5fefb6ecb9808af/f3dasm_optimize-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9ecb6cea1bc69055dda59980584ccc7e2383e6999376e74af263139783138143",
                "md5": "c44d87501561990cc06c97a0c480ba32",
                "sha256": "54fed8f1b358149cd8b47a8a0440792af91c70f003064aba5858403bb29b533a"
            },
            "downloads": -1,
            "filename": "f3dasm_optimize-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "c44d87501561990cc06c97a0c480ba32",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 11199,
            "upload_time": "2025-01-24T13:33:58",
            "upload_time_iso_8601": "2025-01-24T13:33:58.222578Z",
            "url": "https://files.pythonhosted.org/packages/9e/cb/6cea1bc69055dda59980584ccc7e2383e6999376e74af263139783138143/f3dasm_optimize-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-24 13:33:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "bessagroup",
    "github_project": "f3dasm_optimize",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "f3dasm",
            "specs": [
                [
                    ">=",
                    "2.0.0"
                ]
            ]
        }
    ],
    "lcname": "f3dasm-optimize"
}
        
Elapsed time: 3.49371s