faiss


Namefaiss JSON
Version 1.5.3 PyPI version JSON
download
home_pagehttps://github.com/facebookresearch/faiss
SummaryA library for efficient similarity search and clustering of dense vectors
upload_time2019-04-16 14:32:56
maintainer
docs_urlNone
authorMatthijs Douze, Jeff Johnson, Herve Jegou
requires_python
licenseBSD
keywords search nearest neighbors
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
## Unofficial prebuilt binary for Linux and MacOS

The repo that builds this project can be found here: 
[https://github.com/onfido/faiss_prebuilt](https://github.com/onfido/faiss_prebuilt)

## Original readme:

Faiss is a library for efficient similarity search and clustering of dense 
vectors. It contains algorithms that search in sets of vectors of any size,
 up to ones that possibly do not fit in RAM. It also contains supporting 
code for evaluation and parameter tuning. Faiss is written in C++ with 
complete wrappers for Python/numpy. Some of the most useful algorithms 
are implemented on the GPU. It is developed by Facebook AI Research.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/facebookresearch/faiss",
    "name": "faiss",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "search nearest neighbors",
    "author": "Matthijs Douze, Jeff Johnson, Herve Jegou",
    "author_email": "matthijs@fb.com",
    "download_url": "",
    "platform": "",
    "description": "\n## Unofficial prebuilt binary for Linux and MacOS\n\nThe repo that builds this project can be found here: \n[https://github.com/onfido/faiss_prebuilt](https://github.com/onfido/faiss_prebuilt)\n\n## Original readme:\n\nFaiss is a library for efficient similarity search and clustering of dense \nvectors. It contains algorithms that search in sets of vectors of any size,\n up to ones that possibly do not fit in RAM. It also contains supporting \ncode for evaluation and parameter tuning. Faiss is written in C++ with \ncomplete wrappers for Python/numpy. Some of the most useful algorithms \nare implemented on the GPU. It is developed by Facebook AI Research.\n\n\n",
    "bugtrack_url": null,
    "license": "BSD",
    "summary": "A library for efficient similarity search and clustering of dense vectors",
    "version": "1.5.3",
    "project_urls": {
        "Homepage": "https://github.com/facebookresearch/faiss"
    },
    "split_keywords": [
        "search",
        "nearest",
        "neighbors"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9114937da22b9fb796f5a65990cf1f3790a5e8f6a8abc180d6a68d431c9ebd04",
                "md5": "f0144116665a2bf7d9823538fea824a7",
                "sha256": "cc60fee206befd666f1bba56767d1df857ca1fe8d550749dc426719ba96e35ce"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp27-cp27m-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "f0144116665a2bf7d9823538fea824a7",
            "packagetype": "bdist_wheel",
            "python_version": "cp27",
            "requires_python": null,
            "size": 1081664,
            "upload_time": "2019-04-16T14:32:56",
            "upload_time_iso_8601": "2019-04-16T14:32:56.569896Z",
            "url": "https://files.pythonhosted.org/packages/91/14/937da22b9fb796f5a65990cf1f3790a5e8f6a8abc180d6a68d431c9ebd04/faiss-1.5.3-cp27-cp27m-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bdac2bdea5b6c20de8d4874c9725e55f74496134ec82d41428d269a9ea4301d5",
                "md5": "4c1527fa62f6806e6a693c60b825e20b",
                "sha256": "680e0cab16d457698b282a21a0ea7fe20e0d37e8181f81a905cceed80f12ffd3"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp27-cp27mu-manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "4c1527fa62f6806e6a693c60b825e20b",
            "packagetype": "bdist_wheel",
            "python_version": "cp27",
            "requires_python": null,
            "size": 4714415,
            "upload_time": "2019-04-16T14:14:20",
            "upload_time_iso_8601": "2019-04-16T14:14:20.786787Z",
            "url": "https://files.pythonhosted.org/packages/bd/ac/2bdea5b6c20de8d4874c9725e55f74496134ec82d41428d269a9ea4301d5/faiss-1.5.3-cp27-cp27mu-manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0c9fbad61a840e304f6ab82ecb86db6b0cd98b67f0aa4acedeca3d8f6aceb541",
                "md5": "cdc7b2591015876f28bd15eaae893a05",
                "sha256": "d29ec4a1c27ce464a13f54540da35d916373f7f1c2445de4bf6607f89e16a345"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp35-cp35m-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cdc7b2591015876f28bd15eaae893a05",
            "packagetype": "bdist_wheel",
            "python_version": "cp35",
            "requires_python": null,
            "size": 1065525,
            "upload_time": "2019-04-16T14:41:32",
            "upload_time_iso_8601": "2019-04-16T14:41:32.458536Z",
            "url": "https://files.pythonhosted.org/packages/0c/9f/bad61a840e304f6ab82ecb86db6b0cd98b67f0aa4acedeca3d8f6aceb541/faiss-1.5.3-cp35-cp35m-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7c30e53457fb7ea0e1f5d89bf68d6aef327bf7f37b7917361a02c44d5a5cd1db",
                "md5": "051479d77c02c1dc0edde63e9dfa7eba",
                "sha256": "162e674ed57c800bef9a51428719379f7a03b56bd78b6df9c3861e64730bbd33"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp35-cp35m-manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "051479d77c02c1dc0edde63e9dfa7eba",
            "packagetype": "bdist_wheel",
            "python_version": "cp35",
            "requires_python": null,
            "size": 4651954,
            "upload_time": "2019-04-16T14:14:12",
            "upload_time_iso_8601": "2019-04-16T14:14:12.665788Z",
            "url": "https://files.pythonhosted.org/packages/7c/30/e53457fb7ea0e1f5d89bf68d6aef327bf7f37b7917361a02c44d5a5cd1db/faiss-1.5.3-cp35-cp35m-manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "47262f521173730c77b7996b231f14badede70c5bc2b5fac58309923ffb5df9f",
                "md5": "e0cf2b5d4e3d5d338043f3a57ad8c763",
                "sha256": "00bc2f7b7fd8fd793e054a814c97958283478ca1270fb75d66ade210ee1bed75"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp36-cp36m-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "e0cf2b5d4e3d5d338043f3a57ad8c763",
            "packagetype": "bdist_wheel",
            "python_version": "cp36",
            "requires_python": null,
            "size": 1064529,
            "upload_time": "2019-04-16T15:00:32",
            "upload_time_iso_8601": "2019-04-16T15:00:32.449954Z",
            "url": "https://files.pythonhosted.org/packages/47/26/2f521173730c77b7996b231f14badede70c5bc2b5fac58309923ffb5df9f/faiss-1.5.3-cp36-cp36m-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd1c4ae6cb87cf0c09c25561ea48db11e25713b25c580909902a92c090b377c0",
                "md5": "0e9a756f0bdc8f0d350e59be1cc3182f",
                "sha256": "6f0c9d0cd4ba2a3c54d5c0184bfdcd20d071ce833ba2ce41f7c18d56bf30324f"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp36-cp36m-manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "0e9a756f0bdc8f0d350e59be1cc3182f",
            "packagetype": "bdist_wheel",
            "python_version": "cp36",
            "requires_python": null,
            "size": 4650961,
            "upload_time": "2019-04-16T14:13:10",
            "upload_time_iso_8601": "2019-04-16T14:13:10.716140Z",
            "url": "https://files.pythonhosted.org/packages/bd/1c/4ae6cb87cf0c09c25561ea48db11e25713b25c580909902a92c090b377c0/faiss-1.5.3-cp36-cp36m-manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bd6ccdac22d987c093e1cd3570edd510fe0b52067eb229533347b155ff8d33ed",
                "md5": "ffeb353475a97d0fcaa1784426d921fb",
                "sha256": "c2342b0a08995f06d39dc544afe12f301411c104489f3d36cedf30942cd79874"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp37-cp37m-macosx_10_13_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ffeb353475a97d0fcaa1784426d921fb",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": null,
            "size": 1064604,
            "upload_time": "2019-04-16T15:09:33",
            "upload_time_iso_8601": "2019-04-16T15:09:33.412111Z",
            "url": "https://files.pythonhosted.org/packages/bd/6c/cdac22d987c093e1cd3570edd510fe0b52067eb229533347b155ff8d33ed/faiss-1.5.3-cp37-cp37m-macosx_10_13_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef2edc5697e9ff6f313dcaf3afe5ca39d7d8334114cbabaed069d0026bbc3c61",
                "md5": "cc717ce33243a7a093688bd3241cb206",
                "sha256": "48e7a238046f6fc647800a0cd3bc0f3f5e1e232369d48473da694ab262fcb67c"
            },
            "downloads": -1,
            "filename": "faiss-1.5.3-cp37-cp37m-manylinux1_x86_64.whl",
            "has_sig": false,
            "md5_digest": "cc717ce33243a7a093688bd3241cb206",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": null,
            "size": 4651006,
            "upload_time": "2019-04-16T14:13:22",
            "upload_time_iso_8601": "2019-04-16T14:13:22.713406Z",
            "url": "https://files.pythonhosted.org/packages/ef/2e/dc5697e9ff6f313dcaf3afe5ca39d7d8334114cbabaed069d0026bbc3c61/faiss-1.5.3-cp37-cp37m-manylinux1_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-04-16 14:32:56",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "facebookresearch",
    "github_project": "faiss",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "faiss"
}
        
Elapsed time: 0.29397s