fake-read-write-files


Namefake-read-write-files JSON
Version 0.10 PyPI version JSON
download
home_pagehttps://github.com/hansalemaos/fake_read_write_files
SummaryWrite/read from memory instead of files when open() is called
upload_time2022-12-29 06:22:00
maintainer
docs_urlNone
authorJohannes Fischer
requires_python
licenseMIT
keywords read write memory open faster
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            
# Write/read from memory instead of files when open() is called 

## @read_decorator fakes the existence of a file and provides the file content when open(mode='r'/mode='rb') from the builtins is called. 
## @write_decorator captures the output when open(mode='w'/mode='wb') from the builtins is called. 

#### The decorators don't work with functions/methods that don't use the open() function (for example: cv2.imread / cv2.imwrite)

### Some examples 
```python
import pandas as pd
import cv2
from PIL import Image
import numpy as np
import os.path
from fake_read_write_files import read_decorator, write_decorator

@read_decorator
def readutf8(filename, _file_data):
    with open(filename, mode="r", encoding="utf-8") as f:
        data = f.read()
    return data


@write_decorator
def write_pil_image(pilpic, filepath):
    pilpic.save(filepath)
    # don't use "return" here, the function will return a dict


@read_decorator
def read_bin_file(filename, _file_data):
    with open(filename, mode="rb") as f:
        data = f.read()
    return data


@read_decorator
def pandasread(filename, _file_data):
    return pd.read_csv(filename)


@write_decorator
def pandaswrite(df, filename):
    df.to_csv(filename)
    # don't use "return" here, the function will return a dict


# the read decorator always checks for the kwarg "_file_data"
# It must be passed as a kwarg
e = readutf8(
    filename="f:\\txtdoesnotexist.txt", _file_data="I am fake\nDid you know that?"
)
print(e)

# real file
bi = Image.open(r"C:\Users\Gamer\anaconda3\envs\dfdir\xxxxxxxxxx.png")

# writing to a fake file, returns a dict with all written files in the function,
# even if there is no return value declared
o = write_pil_image(bi, filepath="i_am_a_fake_image.png")
print(
    cv2.imdecode(np.frombuffer(o["i_am_a_fake_image.png"], np.uint8), cv2.IMREAD_COLOR)
)


binaryfile = read_bin_file(
    filename="i_am_a_fake_image.png", _file_data=o["i_am_a_fake_image.png"]
)


df = pandasread(filename="test.csv", _file_data="john,1\nmaria,2\ncarlos,3")
print(df)

pdcsv = pandaswrite(df, filename="test.csv")
print(pdcsv)


# output 
I am fake
Did you know that?
[[[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [254 255 255]
  [253 255 255]]
 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [254 255 255]
  [253 255 255]]
 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 255]
  [254 255 255]
  [253 255 255]]
 ...
 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 254]
  [255 255 254]
  [255 255 254]]
 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 254]
  [255 255 254]
  [255 255 254]]
 [[255 255 255]
  [255 255 255]
  [255 255 255]
  ...
  [255 255 254]
  [255 255 254]
  [255 255 254]]]
     john  1
0   maria  2
1  carlos  3
{'test.csv': ',john,1\r\n0,maria,2\r\n1,carlos,3\r\n'}


```




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/hansalemaos/fake_read_write_files",
    "name": "fake-read-write-files",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "read,write,memory,open,faster",
    "author": "Johannes Fischer",
    "author_email": "<aulasparticularesdealemaosp@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/7c/b7/50a04281cc201b6ef3ed51c0402f9cd530f720a90e900d2fc3d4f6ced364/fake_read_write_files-0.10.tar.gz",
    "platform": null,
    "description": "\n# Write/read from memory instead of files when open() is called \n\n## @read_decorator fakes the existence of a file and provides the file content when open(mode='r'/mode='rb') from the builtins is called. \n## @write_decorator captures the output when open(mode='w'/mode='wb') from the builtins is called. \n\n#### The decorators don't work with functions/methods that don't use the open() function (for example: cv2.imread / cv2.imwrite)\n\n### Some examples \n```python\nimport pandas as pd\nimport cv2\nfrom PIL import Image\nimport numpy as np\nimport os.path\nfrom fake_read_write_files import read_decorator, write_decorator\n\n@read_decorator\ndef readutf8(filename, _file_data):\n    with open(filename, mode=\"r\", encoding=\"utf-8\") as f:\n        data = f.read()\n    return data\n\n\n@write_decorator\ndef write_pil_image(pilpic, filepath):\n    pilpic.save(filepath)\n    # don't use \"return\" here, the function will return a dict\n\n\n@read_decorator\ndef read_bin_file(filename, _file_data):\n    with open(filename, mode=\"rb\") as f:\n        data = f.read()\n    return data\n\n\n@read_decorator\ndef pandasread(filename, _file_data):\n    return pd.read_csv(filename)\n\n\n@write_decorator\ndef pandaswrite(df, filename):\n    df.to_csv(filename)\n    # don't use \"return\" here, the function will return a dict\n\n\n# the read decorator always checks for the kwarg \"_file_data\"\n# It must be passed as a kwarg\ne = readutf8(\n    filename=\"f:\\\\txtdoesnotexist.txt\", _file_data=\"I am fake\\nDid you know that?\"\n)\nprint(e)\n\n# real file\nbi = Image.open(r\"C:\\Users\\Gamer\\anaconda3\\envs\\dfdir\\xxxxxxxxxx.png\")\n\n# writing to a fake file, returns a dict with all written files in the function,\n# even if there is no return value declared\no = write_pil_image(bi, filepath=\"i_am_a_fake_image.png\")\nprint(\n    cv2.imdecode(np.frombuffer(o[\"i_am_a_fake_image.png\"], np.uint8), cv2.IMREAD_COLOR)\n)\n\n\nbinaryfile = read_bin_file(\n    filename=\"i_am_a_fake_image.png\", _file_data=o[\"i_am_a_fake_image.png\"]\n)\n\n\ndf = pandasread(filename=\"test.csv\", _file_data=\"john,1\\nmaria,2\\ncarlos,3\")\nprint(df)\n\npdcsv = pandaswrite(df, filename=\"test.csv\")\nprint(pdcsv)\n\n\n# output \nI am fake\nDid you know that?\n[[[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 255]\n  [254 255 255]\n  [253 255 255]]\n [[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 255]\n  [254 255 255]\n  [253 255 255]]\n [[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 255]\n  [254 255 255]\n  [253 255 255]]\n ...\n [[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 254]\n  [255 255 254]\n  [255 255 254]]\n [[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 254]\n  [255 255 254]\n  [255 255 254]]\n [[255 255 255]\n  [255 255 255]\n  [255 255 255]\n  ...\n  [255 255 254]\n  [255 255 254]\n  [255 255 254]]]\n     john  1\n0   maria  2\n1  carlos  3\n{'test.csv': ',john,1\\r\\n0,maria,2\\r\\n1,carlos,3\\r\\n'}\n\n\n```\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Write/read from memory instead of files when open() is called",
    "version": "0.10",
    "split_keywords": [
        "read",
        "write",
        "memory",
        "open",
        "faster"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "7fa1fd0c66b903c439020a9f42af7490",
                "sha256": "0e9ed8faf9c5637da144187cb33e058487ff3b3bbadcc2e317e26359a0787e8a"
            },
            "downloads": -1,
            "filename": "fake_read_write_files-0.10-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7fa1fd0c66b903c439020a9f42af7490",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 6514,
            "upload_time": "2022-12-29T06:21:58",
            "upload_time_iso_8601": "2022-12-29T06:21:58.876319Z",
            "url": "https://files.pythonhosted.org/packages/97/b6/b47c18c59831bb57dbb0a696bb32d76159f2950eae431149f5147d894b90/fake_read_write_files-0.10-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "a50126f2fbb1c6e668c556ddff86104e",
                "sha256": "e2001765429c1d3d496058f5e47e86272e403fc86a420c52c501878167ddf6b5"
            },
            "downloads": -1,
            "filename": "fake_read_write_files-0.10.tar.gz",
            "has_sig": false,
            "md5_digest": "a50126f2fbb1c6e668c556ddff86104e",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 4659,
            "upload_time": "2022-12-29T06:22:00",
            "upload_time_iso_8601": "2022-12-29T06:22:00.220960Z",
            "url": "https://files.pythonhosted.org/packages/7c/b7/50a04281cc201b6ef3ed51c0402f9cd530f720a90e900d2fc3d4f6ced364/fake_read_write_files-0.10.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2022-12-29 06:22:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "hansalemaos",
    "github_project": "fake_read_write_files",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "fake-read-write-files"
}
        
Elapsed time: 0.05458s