# FarmWorld
A reinforcement learning library for agriculture.
# HOWTO
```python
pip install farmworld
```
# Install from source
```
make venv
make install
```
# Build/Publish
Put a new release on Github
```shell
poetry build
poetry publish
```
# Test
```python
PYTHONPATH=. python test/test_env.py
```
# Current Status
DQN basically solves it after 100k steps.
* Normalized the easy way using vecnormalize.
* Added a zeroth action and trimmed the action space a bit
# TODO
* complicate the problem! multiple crops, and they need to start dieing off at some point
# make env realistic -- add different plants
# fix planting density
# add different plants which have different maturities, weather needs etc.
# plus weather forecast, soil quality(split into attributes)
Raw data
{
"_id": null,
"home_page": "https://github.com/tomgrek/farmworld",
"name": "farmworld",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.8,<4.0",
"maintainer_email": "",
"keywords": "reinforcement,machine,learning,farming,agriculture",
"author": "Tom Grek",
"author_email": "tom.grek@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/59/a1/d2f4a79d8bd71871f805beccc4e25c879213c24cf2936c732134717f02c6/farmworld-0.0.3.tar.gz",
"platform": null,
"description": "# FarmWorld\n\nA reinforcement learning library for agriculture.\n\n# HOWTO\n\n```python\npip install farmworld\n```\n\n# Install from source\n\n```\nmake venv\nmake install\n```\n\n# Build/Publish\n\nPut a new release on Github\n\n```shell\npoetry build\npoetry publish\n```\n\n# Test\n\n```python\nPYTHONPATH=. python test/test_env.py\n```\n\n# Current Status\n\nDQN basically solves it after 100k steps.\n\n* Normalized the easy way using vecnormalize.\n* Added a zeroth action and trimmed the action space a bit\n\n# TODO\n\n* complicate the problem! multiple crops, and they need to start dieing off at some point\n\n# make env realistic -- add different plants\n# fix planting density\n# add different plants which have different maturities, weather needs etc. \n# plus weather forecast, soil quality(split into attributes)",
"bugtrack_url": null,
"license": "",
"summary": "Reinforcement Learning for Agriculture",
"version": "0.0.3",
"split_keywords": [
"reinforcement",
"machine",
"learning",
"farming",
"agriculture"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "f0d2dda33ca6385bc5fadfb4bc6d0be7",
"sha256": "4e5eaf8b76989d8e232121143d3a3f4ddd1641faca65aa47dbfe351c8b75b559"
},
"downloads": -1,
"filename": "farmworld-0.0.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f0d2dda33ca6385bc5fadfb4bc6d0be7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8,<4.0",
"size": 8770,
"upload_time": "2022-12-03T04:32:46",
"upload_time_iso_8601": "2022-12-03T04:32:46.101732Z",
"url": "https://files.pythonhosted.org/packages/0f/e0/61a3000a45980698b367284c3d43bab31dc1d4c53a17ed6f58cfaf72e60b/farmworld-0.0.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "3ed600b27a15613bbacabc9dbb09452c",
"sha256": "f73717e533904203ee47f6359c13d1f8f42d677b2ce3230c3151101fe4572cc9"
},
"downloads": -1,
"filename": "farmworld-0.0.3.tar.gz",
"has_sig": false,
"md5_digest": "3ed600b27a15613bbacabc9dbb09452c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8,<4.0",
"size": 7792,
"upload_time": "2022-12-03T04:32:48",
"upload_time_iso_8601": "2022-12-03T04:32:48.069967Z",
"url": "https://files.pythonhosted.org/packages/59/a1/d2f4a79d8bd71871f805beccc4e25c879213c24cf2936c732134717f02c6/farmworld-0.0.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-03 04:32:48",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "tomgrek",
"github_project": "farmworld",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "farmworld"
}