fast-vertex-quality-inference


Namefast-vertex-quality-inference JSON
Version 1.0.14 PyPI version JSON
download
home_pagehttps://gitlab.cern.ch/amarshal/fast_vertexing_variables/-/tree/master/inference
SummaryInference code for fast generation of vertex quality variables
upload_time2024-11-11 11:31:53
maintainerNone
docs_urlNone
authorAlex Marshall
requires_python<4.0,>=3.9
licenseMIT
keywords inference vertex-quality fast-generation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Fast Vertexing Variables at LHCb - Inference Library

Full documentation is avalibale [**here**](https://fastvertexing.docs.cern.ch/index.html
).

## Description

This tool provides a quick approximation of the LHCb reconstruction process. Built on top of [**RapidSim**](https://github.com/gcowan/RapidSim), the `run` function automatically communicates with RapidSim to generate kinematic information which is then smeared before predictions of high-level vertexing variables are generated.

The software utilizes **Variational Autoencoders** (VAEs) to estimate these variables. These VAEs are trained on output from the LHCb simulation software.

Generated tuples can be integrated with other tools such as [**TriggerCalib**](https://pypi.org/project/triggercalib/) and [**PIDCalib2**](https://pypi.org/project/pidcalib2/), completing the full chain of estimation of reconstruction efficiencies and mass shapes for background studies at LHCb.

### Disclaimer

This tool is not designed to replace the full simulation software. It is designed to quickly return reasonable estimates of mass shapes and efficiencies.  

## Environment Setup

RaidSim is required to use the full functionalty of this library. The environment variables $RAPIDSIM_ROOT and $EVTGEN_ROOT that are used by the code to access the install. 

- `RAPIDSIM_ROOT`: The root directory for RapidSim.
- `EVTGEN_ROOT` (optional): The root directory for EVTGEN, if applicable.

## Example Usage

### `run()`

The `run()` function is the primary method to execute FastVertexing. It handles several key operations in the vertexing and event simulation process:

```python
from fast_vertex_quality_inference import run

run(
    events=1000,
    decay="B+ -> { D0b -> K+ e- anti-nue } pi+",
    naming_scheme="B_plus -> { NA -> K_plus e_minus NA } e_plus",
    decay_models="PHSP -> { ISGW2 -> PHSP PHSP PHSP } PHSP",
    mass_hypotheses={"e_plus": "e+"},
    intermediate_particle={"Jpsi": ["e_minus", "e_plus"]},
)
```

### `run_from_tuple()`

The `run_from_tuple()` function only executes the vertexing network on an existing tuple and can be used without a RapidSim installation.

```python

from fast_vertex_quality_inference import run_from_tuple

run_from_tuple(
    file="decay_tree.root",
    mother_particle="MOTHER",
    daughter_particles=["DAUGHTER1", "DAUGHTER2", "DAUGHTER3"],
    fully_reco=False,
    nPositive_missing_particles=0,
    nNegative_missing_particles=0,
    mass_hypotheses={"DAUGHTER2": "e+"},
    intermediate_particle={"INTERMEDIATE": ["DAUGHTER2", "DAUGHTER3"]},
    branch_naming_structure={"true_momenta_component": "{particle}_TRUE_P{dim}"},
)
```





            

Raw data

            {
    "_id": null,
    "home_page": "https://gitlab.cern.ch/amarshal/fast_vertexing_variables/-/tree/master/inference",
    "name": "fast-vertex-quality-inference",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<4.0,>=3.9",
    "maintainer_email": null,
    "keywords": "inference, vertex-quality, fast-generation",
    "author": "Alex Marshall",
    "author_email": "alex.marshall@bristol.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/84/ec/19880abaef25737f72c1732edd8eec28cd1d7d7936a2e228c45e56c16717/fast_vertex_quality_inference-1.0.14.tar.gz",
    "platform": null,
    "description": "# Fast Vertexing Variables at LHCb - Inference Library\n\nFull documentation is avalibale [**here**](https://fastvertexing.docs.cern.ch/index.html\n).\n\n## Description\n\nThis tool provides a quick approximation of the LHCb reconstruction process. Built on top of [**RapidSim**](https://github.com/gcowan/RapidSim), the `run` function automatically communicates with RapidSim to generate kinematic information which is then smeared before predictions of high-level vertexing variables are generated.\n\nThe software utilizes **Variational Autoencoders** (VAEs) to estimate these variables. These VAEs are trained on output from the LHCb simulation software.\n\nGenerated tuples can be integrated with other tools such as [**TriggerCalib**](https://pypi.org/project/triggercalib/) and [**PIDCalib2**](https://pypi.org/project/pidcalib2/), completing the full chain of estimation of reconstruction efficiencies and mass shapes for background studies at LHCb.\n\n### Disclaimer\n\nThis tool is not designed to replace the full simulation software. It is designed to quickly return reasonable estimates of mass shapes and efficiencies.  \n\n## Environment Setup\n\nRaidSim is required to use the full functionalty of this library. The environment variables $RAPIDSIM_ROOT and $EVTGEN_ROOT that are used by the code to access the install. \n\n- `RAPIDSIM_ROOT`: The root directory for RapidSim.\n- `EVTGEN_ROOT` (optional): The root directory for EVTGEN, if applicable.\n\n## Example Usage\n\n### `run()`\n\nThe `run()` function is the primary method to execute FastVertexing. It handles several key operations in the vertexing and event simulation process:\n\n```python\nfrom fast_vertex_quality_inference import run\n\nrun(\n    events=1000,\n    decay=\"B+ -> { D0b -> K+ e- anti-nue } pi+\",\n    naming_scheme=\"B_plus -> { NA -> K_plus e_minus NA } e_plus\",\n    decay_models=\"PHSP -> { ISGW2 -> PHSP PHSP PHSP } PHSP\",\n    mass_hypotheses={\"e_plus\": \"e+\"},\n    intermediate_particle={\"Jpsi\": [\"e_minus\", \"e_plus\"]},\n)\n```\n\n### `run_from_tuple()`\n\nThe `run_from_tuple()` function only executes the vertexing network on an existing tuple and can be used without a RapidSim installation.\n\n```python\n\nfrom fast_vertex_quality_inference import run_from_tuple\n\nrun_from_tuple(\n    file=\"decay_tree.root\",\n    mother_particle=\"MOTHER\",\n    daughter_particles=[\"DAUGHTER1\", \"DAUGHTER2\", \"DAUGHTER3\"],\n    fully_reco=False,\n    nPositive_missing_particles=0,\n    nNegative_missing_particles=0,\n    mass_hypotheses={\"DAUGHTER2\": \"e+\"},\n    intermediate_particle={\"INTERMEDIATE\": [\"DAUGHTER2\", \"DAUGHTER3\"]},\n    branch_naming_structure={\"true_momenta_component\": \"{particle}_TRUE_P{dim}\"},\n)\n```\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Inference code for fast generation of vertex quality variables",
    "version": "1.0.14",
    "project_urls": {
        "Homepage": "https://gitlab.cern.ch/amarshal/fast_vertexing_variables/-/tree/master/inference"
    },
    "split_keywords": [
        "inference",
        " vertex-quality",
        " fast-generation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "024f44da99aeb8df49d5eec0a9248922e7bc9b8509673179549f90f047fbe9cc",
                "md5": "5052e4cefaf3a7439e4b140a107ef5fa",
                "sha256": "d2893b1b014bf4264db2e264dbf319c3e151a0cc37086b0f0ecfc632aa9f831c"
            },
            "downloads": -1,
            "filename": "fast_vertex_quality_inference-1.0.14-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5052e4cefaf3a7439e4b140a107ef5fa",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<4.0,>=3.9",
            "size": 40968437,
            "upload_time": "2024-11-11T11:31:45",
            "upload_time_iso_8601": "2024-11-11T11:31:45.877703Z",
            "url": "https://files.pythonhosted.org/packages/02/4f/44da99aeb8df49d5eec0a9248922e7bc9b8509673179549f90f047fbe9cc/fast_vertex_quality_inference-1.0.14-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "84ec19880abaef25737f72c1732edd8eec28cd1d7d7936a2e228c45e56c16717",
                "md5": "079457d983d90fad876e4e9ac8dffb5b",
                "sha256": "ef0b793f510580c933561bdef094c2aa2f42763dae3c6a939694d5aafe47b81c"
            },
            "downloads": -1,
            "filename": "fast_vertex_quality_inference-1.0.14.tar.gz",
            "has_sig": false,
            "md5_digest": "079457d983d90fad876e4e9ac8dffb5b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<4.0,>=3.9",
            "size": 40979479,
            "upload_time": "2024-11-11T11:31:53",
            "upload_time_iso_8601": "2024-11-11T11:31:53.432049Z",
            "url": "https://files.pythonhosted.org/packages/84/ec/19880abaef25737f72c1732edd8eec28cd1d7d7936a2e228c45e56c16717/fast_vertex_quality_inference-1.0.14.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-11 11:31:53",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "fast-vertex-quality-inference"
}
        
Elapsed time: 0.44849s