Overview
================
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
![](https://raw.githubusercontent.com/skaliy/skaliy.github.io/master/assets/fastmonai_v1.png)
![CI](https://github.com/MMIV-ML/fastMONAI/workflows/CI/badge.svg)
[![Docs](https://github.com/MMIV-ML/fastMONAI/actions/workflows/deploy.yaml/badge.svg)](https://fastmonai.no)
[![PyPI](https://img.shields.io/pypi/v/fastMONAI?color=blue&label=PyPI%20version&logo=python&logoColor=white.png)](https://pypi.org/project/fastMONAI)
A low-code Python-based open source deep learning library built on top
of [fastai](https://github.com/fastai/fastai),
[MONAI](https://monai.io/), and
[TorchIO](https://torchio.readthedocs.io/).
fastMONAI simplifies the use of state-of-the-art deep learning
techniques in 3D medical image analysis for solving classification,
regression, and segmentation tasks. fastMONAI provides the users with
functionalities to step through data loading, preprocessing, training,
and result interpretations.
<b>Note:</b> This documentation is also available as interactive
notebooks.
# Installing
## From [PyPI](https://pypi.org/project/fastMONAI/)
`pip install fastMONAI`
## From [GitHub](https://github.com/MMIV-ML/fastMONAI)
If you want to install an editable version of fastMONAI run:
- `git clone https://github.com/MMIV-ML/fastMONAI`
- `pip install -e 'fastMONAI[dev]'`
# Getting started
The best way to get started using fastMONAI is to dive into our beginner-friendly [video](https://fastmonai.no/tutorial_beginner_video). For a deeper understanding and hands-on experience, our comprehensive instructional notebooks will walk you through model training for various tasks like classification, regression, and segmentation. See the docs at https://fastmonai.no for more information.
| Notebook | 1-Click Notebook |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |
| [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (“brain age”). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |
| [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |
| [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |
# How to contribute
See
[CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)
Raw data
{
"_id": null,
"home_page": "https://github.com/MMIV-ML/fastMONAI",
"name": "fastMONAI",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "deep learning,medical imaging",
"author": "Satheshkumar Kaliyugarasan",
"author_email": "skka@hvl.no",
"download_url": "https://files.pythonhosted.org/packages/78/42/02423a1e48b95391a8d6c7688d1c3fab636865485bad5b12e6c3db91f97d/fastMONAI-0.4.0.1.tar.gz",
"platform": null,
"description": "Overview\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n![](https://raw.githubusercontent.com/skaliy/skaliy.github.io/master/assets/fastmonai_v1.png)\n\n![CI](https://github.com/MMIV-ML/fastMONAI/workflows/CI/badge.svg)\n[![Docs](https://github.com/MMIV-ML/fastMONAI/actions/workflows/deploy.yaml/badge.svg)](https://fastmonai.no)\n[![PyPI](https://img.shields.io/pypi/v/fastMONAI?color=blue&label=PyPI%20version&logo=python&logoColor=white.png)](https://pypi.org/project/fastMONAI)\n\nA low-code Python-based open source deep learning library built on top\nof [fastai](https://github.com/fastai/fastai),\n[MONAI](https://monai.io/), and\n[TorchIO](https://torchio.readthedocs.io/).\n\nfastMONAI simplifies the use of state-of-the-art deep learning\ntechniques in 3D medical image analysis for solving classification,\nregression, and segmentation tasks. fastMONAI provides the users with\nfunctionalities to step through data loading, preprocessing, training,\nand result interpretations.\n\n<b>Note:</b> This documentation is also available as interactive\nnotebooks.\n\n# Installing\n\n## From [PyPI](https://pypi.org/project/fastMONAI/)\n\n`pip install fastMONAI`\n\n## From [GitHub](https://github.com/MMIV-ML/fastMONAI)\n\nIf you want to install an editable version of fastMONAI run:\n\n- `git clone https://github.com/MMIV-ML/fastMONAI`\n- `pip install -e 'fastMONAI[dev]'`\n\n# Getting started\n\nThe best way to get started using fastMONAI is to dive into our beginner-friendly [video](https://fastmonai.no/tutorial_beginner_video). For a deeper understanding and hands-on experience, our comprehensive instructional notebooks will walk you through model training for various tasks like classification, regression, and segmentation. See the docs at https://fastmonai.no for more information.\n\n| Notebook | 1-Click Notebook |\n|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [10a_tutorial_classification.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) <br>shows how to construct a binary classification model based on MRI data. | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb) |\n| [10b_tutorial_regression.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) <br>shows how to construct a model to predict the age of a subject from MRI scans (\u201cbrain age\u201d). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10b_tutorial_regression.ipynb) |\n| [10c_tutorial_binary_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) <br>shows how to do binary segmentation (extract the left atrium from monomodal cardiac MRI). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10c_tutorial_binary_segmentation.ipynb) |\n| [10d_tutorial_multiclass_segmentation.ipynb](https://nbviewer.org/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) <br>shows how to perform segmentation from multimodal MRI (brain tumor segmentation). | [![Google Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10d_tutorial_multiclass_segmentation.ipynb) |\n\n# How to contribute\n\nSee\n[CONTRIBUTING.md](https://github.com/MMIV-ML/fastMONAI/blob/master/CONTRIBUTING.md)\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "fastMONAI library",
"version": "0.4.0.1",
"project_urls": {
"Homepage": "https://github.com/MMIV-ML/fastMONAI"
},
"split_keywords": [
"deep learning",
"medical imaging"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1ec3bf946ba35039b3692e9512481091efdebdf2b17aaf29aa1797c23c142876",
"md5": "78274fed00f89d8d23f87a10662bcd42",
"sha256": "3bd4af5c5062709d611ec938cdc034d5b49b9e72dbbaf89d60deeb5a8b5fe56b"
},
"downloads": -1,
"filename": "fastMONAI-0.4.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "78274fed00f89d8d23f87a10662bcd42",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 30968,
"upload_time": "2023-09-04T16:42:27",
"upload_time_iso_8601": "2023-09-04T16:42:27.431400Z",
"url": "https://files.pythonhosted.org/packages/1e/c3/bf946ba35039b3692e9512481091efdebdf2b17aaf29aa1797c23c142876/fastMONAI-0.4.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "784202423a1e48b95391a8d6c7688d1c3fab636865485bad5b12e6c3db91f97d",
"md5": "aa2d8ff591d57d510333bcc965143a02",
"sha256": "dc045caad37862299ae1a8fde4911171a1ef4fc24b7a0c925b385a9eddb49d6d"
},
"downloads": -1,
"filename": "fastMONAI-0.4.0.1.tar.gz",
"has_sig": false,
"md5_digest": "aa2d8ff591d57d510333bcc965143a02",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 29597,
"upload_time": "2023-09-04T16:42:29",
"upload_time_iso_8601": "2023-09-04T16:42:29.785456Z",
"url": "https://files.pythonhosted.org/packages/78/42/02423a1e48b95391a8d6c7688d1c3fab636865485bad5b12e6c3db91f97d/fastMONAI-0.4.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-09-04 16:42:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "MMIV-ML",
"github_project": "fastMONAI",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fastmonai"
}