fast_fig


Namefast_fig JSON
Version 0.8.0 PyPI version JSON
download
home_pageNone
SummaryFaSt_Fig is a wrapper for matplotlib with templates.
upload_time2025-08-28 19:36:57
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseNone
keywords matplotlib figure
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FaSt_Fig
FaSt_Fig is a wrapper for matplotlib that provides a simple interface for fast and easy plotting.

Key features:
- Predefined templates for consistent styling
- Figure instantiation in a class object
- Simplified plotting methods with smart defaults
- Automatic handling of DataFrames
- Context manager support for clean resource management
- Type hints and logging for better development experience

## Installation

```bash
pip install fast_fig
```

## Basic Usage

```python
from fast_fig import FFig
x = [1,2,3,4,5]
y1 = [2,4,5,6,10]
y2 = [1,3,2,6,9]

# Simple plot example
fig = FFig()
fig.plot(x,y1)
fig.show()

# Use large template and save figure to multiple formats
fig = FFig('l')
fig.plot(x,y)
fig.save('plot.png', 'pdf')
```

## Context Manager

FaSt_Fig can be used as a context manager for automatic resource cleanup:

```python
with FFig('l', nrows=2, sharex=True) as fig:  # Large template, 2 rows sharing x-axis
    fig.plot([1, 2, 2.5], label="First")  # Plot in first axis/subplot
    fig.set_title("First plot")
    fig.next_axis()  # Switch to second axis/subplot
    fig.plot([0, 1, 2], [0, 1, 4], label="Second")  # Plot with x,y data
    fig.legend()  # Add legend
    fig.grid()  # Add grid
    fig.set_xlabel("X values")  # Label x-axis
    fig.save("plot.png", "pdf")  # Save as PNG and PDF
    # Figure automatically closed when exiting the with block
```

## Plot Types

FaSt_Fig supports all plots of matplotlib.
The following plots have adjusted settings to improve their use.

```python
# Bar plots
fig.bar_plot(x, height)

# Logarithmic scales
fig.semilogx(x, y)  # logarithmic x-axis
fig.semilogy(x, y)  # logarithmic y-axis

# 2D plots
x, y = np.meshgrid(np.linspace(-2, 2, 100), np.linspace(-2, 2, 100))
z = np.exp(-(x**2 + y**2))

fig.pcolor(z)  # pseudocolor plot
fig.colorbar(label='Values')  # add colorbar


fig.pcolor_log(z)  # pseudocolor with logarithmic color scale

fig.contour(z, levels=[0.2, 0.5, 0.8])  # contour plot

# Scatter plots
fig.scatter(x, y, c=colors, s=sizes)  # scatter plot with colors and sizes
```

## DataFrame Support

FaSt_Fig has built-in support for pandas DataFrames:

```python
import pandas as pd

# Create a DataFrame with datetime index
df = pd.DataFrame({
    'A': [1, 2, 3, 4],
    'B': [2, 4, 6, 8]
}, index=pd.date_range('2024-01-01', periods=4))

fig = FFig()
fig.plot(df)  # Automatic handling:
              # - Each column becomes a line
              # - Column names become labels
              # - Index used as x-axis
              # - Date index sets x-label to "Date"
```

## Matplotlib interaction

FaSt_Fig provides direct access to matplotlib objects through these handlers:

- `fig.current_axis`: Current axes instance for active subplot
- `fig.handle_fig`: Figure instance for figure-level operations
- `fig.handle_plot`: Current plot instance(s)
- `fig.handle_axis`: All axes instances for subplot access
```python
fig.current_axis.set_yscale('log')  # Direct matplotlib axis methods
fig.handle_fig.tight_layout()  # Adjust layout
fig.handle_plot[0].set_linewidth(2)  # Modify line properties
fig.handle_axis[0].set_title('First subplot')  # Access any subplot
```

These handles provide full access to matplotlib's functionality when needed.

## Presets

FaSt_Fig comes with built-in presets that control figure appearance. Available preset templates:

- `m` (medium): 15x10 cm, sans-serif font, good for general use
- `s` (small): 10x8 cm, sans-serif font, suitable for small plots
- `l` (large): 20x15 cm, sans-serif font, ideal for presentations
- `ol` (Optics Letters): 8x6 cm, serif font, optimized for single line plots
- `oe` (Optics Express): 12x8 cm, serif font, designed for equation plots
- `square`: 10x10 cm, serif font, perfect for square plots

Each preset defines:
- `width`: Figure width in cm
- `height`: Figure height in cm
- `fontfamily`: Font family (serif or sans-serif)
- `fontsize`: Font size in points
- `linewidth`: Line width in points

You can use presets in three ways:

1. Use a built-in preset:
```python
fig = FFig('l')  # Use large preset
```

2. Load custom presets from a file:
```python
fig = FFig('m', presets='my_presets.yaml')  # YAML format
fig = FFig('m', presets='my_presets.json')  # or JSON format
```

3. Override specific preset values:
```python
fig = FFig('m', width=12, fontsize=14)  # Override width and fontsize
```

The preset system also includes color sequences and line styles that cycle automatically when plotting multiple lines:
- Default colors: blue, red, green, orange
- Default line styles: solid (-), dashed (--), dotted (:), dash-dot (-.)

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

## License

Licensed under MIT License. See [LICENSE](LICENSE) for details.

## Author

Written by Fabian Stutzki (fast@fast-apps.de)

For more information, visit [www.fast-apps.de](https://www.fast-apps.de)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fast_fig",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "matplotlib, figure",
    "author": null,
    "author_email": "Fabian Stutzki <fast@fast-apps.de>",
    "download_url": "https://files.pythonhosted.org/packages/f6/70/c0cc7bafdfdf835a3af4a857fb453fd57662de09277b16366dd7ff25234a/fast_fig-0.8.0.tar.gz",
    "platform": null,
    "description": "# FaSt_Fig\nFaSt_Fig is a wrapper for matplotlib that provides a simple interface for fast and easy plotting.\n\nKey features:\n- Predefined templates for consistent styling\n- Figure instantiation in a class object\n- Simplified plotting methods with smart defaults\n- Automatic handling of DataFrames\n- Context manager support for clean resource management\n- Type hints and logging for better development experience\n\n## Installation\n\n```bash\npip install fast_fig\n```\n\n## Basic Usage\n\n```python\nfrom fast_fig import FFig\nx = [1,2,3,4,5]\ny1 = [2,4,5,6,10]\ny2 = [1,3,2,6,9]\n\n# Simple plot example\nfig = FFig()\nfig.plot(x,y1)\nfig.show()\n\n# Use large template and save figure to multiple formats\nfig = FFig('l')\nfig.plot(x,y)\nfig.save('plot.png', 'pdf')\n```\n\n## Context Manager\n\nFaSt_Fig can be used as a context manager for automatic resource cleanup:\n\n```python\nwith FFig('l', nrows=2, sharex=True) as fig:  # Large template, 2 rows sharing x-axis\n    fig.plot([1, 2, 2.5], label=\"First\")  # Plot in first axis/subplot\n    fig.set_title(\"First plot\")\n    fig.next_axis()  # Switch to second axis/subplot\n    fig.plot([0, 1, 2], [0, 1, 4], label=\"Second\")  # Plot with x,y data\n    fig.legend()  # Add legend\n    fig.grid()  # Add grid\n    fig.set_xlabel(\"X values\")  # Label x-axis\n    fig.save(\"plot.png\", \"pdf\")  # Save as PNG and PDF\n    # Figure automatically closed when exiting the with block\n```\n\n## Plot Types\n\nFaSt_Fig supports all plots of matplotlib.\nThe following plots have adjusted settings to improve their use.\n\n```python\n# Bar plots\nfig.bar_plot(x, height)\n\n# Logarithmic scales\nfig.semilogx(x, y)  # logarithmic x-axis\nfig.semilogy(x, y)  # logarithmic y-axis\n\n# 2D plots\nx, y = np.meshgrid(np.linspace(-2, 2, 100), np.linspace(-2, 2, 100))\nz = np.exp(-(x**2 + y**2))\n\nfig.pcolor(z)  # pseudocolor plot\nfig.colorbar(label='Values')  # add colorbar\n\n\nfig.pcolor_log(z)  # pseudocolor with logarithmic color scale\n\nfig.contour(z, levels=[0.2, 0.5, 0.8])  # contour plot\n\n# Scatter plots\nfig.scatter(x, y, c=colors, s=sizes)  # scatter plot with colors and sizes\n```\n\n## DataFrame Support\n\nFaSt_Fig has built-in support for pandas DataFrames:\n\n```python\nimport pandas as pd\n\n# Create a DataFrame with datetime index\ndf = pd.DataFrame({\n    'A': [1, 2, 3, 4],\n    'B': [2, 4, 6, 8]\n}, index=pd.date_range('2024-01-01', periods=4))\n\nfig = FFig()\nfig.plot(df)  # Automatic handling:\n              # - Each column becomes a line\n              # - Column names become labels\n              # - Index used as x-axis\n              # - Date index sets x-label to \"Date\"\n```\n\n## Matplotlib interaction\n\nFaSt_Fig provides direct access to matplotlib objects through these handlers:\n\n- `fig.current_axis`: Current axes instance for active subplot\n- `fig.handle_fig`: Figure instance for figure-level operations\n- `fig.handle_plot`: Current plot instance(s)\n- `fig.handle_axis`: All axes instances for subplot access\n```python\nfig.current_axis.set_yscale('log')  # Direct matplotlib axis methods\nfig.handle_fig.tight_layout()  # Adjust layout\nfig.handle_plot[0].set_linewidth(2)  # Modify line properties\nfig.handle_axis[0].set_title('First subplot')  # Access any subplot\n```\n\nThese handles provide full access to matplotlib's functionality when needed.\n\n## Presets\n\nFaSt_Fig comes with built-in presets that control figure appearance. Available preset templates:\n\n- `m` (medium): 15x10 cm, sans-serif font, good for general use\n- `s` (small): 10x8 cm, sans-serif font, suitable for small plots\n- `l` (large): 20x15 cm, sans-serif font, ideal for presentations\n- `ol` (Optics Letters): 8x6 cm, serif font, optimized for single line plots\n- `oe` (Optics Express): 12x8 cm, serif font, designed for equation plots\n- `square`: 10x10 cm, serif font, perfect for square plots\n\nEach preset defines:\n- `width`: Figure width in cm\n- `height`: Figure height in cm\n- `fontfamily`: Font family (serif or sans-serif)\n- `fontsize`: Font size in points\n- `linewidth`: Line width in points\n\nYou can use presets in three ways:\n\n1. Use a built-in preset:\n```python\nfig = FFig('l')  # Use large preset\n```\n\n2. Load custom presets from a file:\n```python\nfig = FFig('m', presets='my_presets.yaml')  # YAML format\nfig = FFig('m', presets='my_presets.json')  # or JSON format\n```\n\n3. Override specific preset values:\n```python\nfig = FFig('m', width=12, fontsize=14)  # Override width and fontsize\n```\n\nThe preset system also includes color sequences and line styles that cycle automatically when plotting multiple lines:\n- Default colors: blue, red, green, orange\n- Default line styles: solid (-), dashed (--), dotted (:), dash-dot (-.)\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request.\n\n## License\n\nLicensed under MIT License. See [LICENSE](LICENSE) for details.\n\n## Author\n\nWritten by Fabian Stutzki (fast@fast-apps.de)\n\nFor more information, visit [www.fast-apps.de](https://www.fast-apps.de)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "FaSt_Fig is a wrapper for matplotlib with templates.",
    "version": "0.8.0",
    "project_urls": null,
    "split_keywords": [
        "matplotlib",
        " figure"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "68a76144e18e2f2ae6ff2911a50183c2a782b80261729d724adc1d6b666028ea",
                "md5": "2ada4c7793620d43737268765e9e3c90",
                "sha256": "21c1da83b54423391e8c3a9c66afe34c82410c4bd63fc6895a8c46dc568bc3bc"
            },
            "downloads": -1,
            "filename": "fast_fig-0.8.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2ada4c7793620d43737268765e9e3c90",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 16673,
            "upload_time": "2025-08-28T19:36:56",
            "upload_time_iso_8601": "2025-08-28T19:36:56.451927Z",
            "url": "https://files.pythonhosted.org/packages/68/a7/6144e18e2f2ae6ff2911a50183c2a782b80261729d724adc1d6b666028ea/fast_fig-0.8.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f670c0cc7bafdfdf835a3af4a857fb453fd57662de09277b16366dd7ff25234a",
                "md5": "6ccba52d8a611e50f7e5a28e29c85cf7",
                "sha256": "58a5f90b940e3eaba27a0aed24a3381f0414ddf9d34743f36c00756dd5fab5c4"
            },
            "downloads": -1,
            "filename": "fast_fig-0.8.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6ccba52d8a611e50f7e5a28e29c85cf7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 22236,
            "upload_time": "2025-08-28T19:36:57",
            "upload_time_iso_8601": "2025-08-28T19:36:57.345570Z",
            "url": "https://files.pythonhosted.org/packages/f6/70/c0cc7bafdfdf835a3af4a857fb453fd57662de09277b16366dd7ff25234a/fast_fig-0.8.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-08-28 19:36:57",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "fast_fig"
}
        
Elapsed time: 1.86939s