fastai-datasets
================
<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->
## Docs
See https://irad-zehavi.github.io/fastai-datasets/
## Install
``` sh
pip install fastai_datasets
```
## How to use
As an nbdev library, `fatai_datasets` supports `import *` (without
importing unwanted symbols):
``` python
from fastai_datasets.all import *
```
Here are a few usage examles:
### Easily load a dataset
``` python
mnist = MNIST()
mnist.dls().show_batch()
```

### Show the class distribution
``` python
mnist.plot_class_distribution()
```

### Sample a subset
Whole datasets:
``` python
mnist
```
[(#60000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]
(#10000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]]
Subset:
``` python
mnist.random_sub_dsets(1000)
```
[(#861) [(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(6)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(5)),(PILImageBW mode=L size=28x28, TensorCategory(1))...]
(#139) [(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(9))...]]
### Construct a subset based on classes
``` python
cifar10 = CIFAR10()
dig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']
dig_frog_bird.dls().show_batch()
```

### Construct a dataset of similarity pairs
``` python
Pairs(cifar10, .01).dls().show_batch()
```

Raw data
{
"_id": null,
"home_page": "https://github.com/Irad-Zehavi/fastai-datasets",
"name": "fastai-datasets",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "nbdev jupyter notebook python",
"author": "iradz",
"author_email": "irad.zehavi@outlook.com",
"download_url": "https://files.pythonhosted.org/packages/a3/de/dd6bad069b82d20db4fc46f6c809d3e0208f214e4533bff792e4e2caf1c1/fastai-datasets-0.0.8.tar.gz",
"platform": null,
"description": "fastai-datasets\n================\n\n<!-- WARNING: THIS FILE WAS AUTOGENERATED! DO NOT EDIT! -->\n\n## Docs\n\nSee https://irad-zehavi.github.io/fastai-datasets/\n\n## Install\n\n``` sh\npip install fastai_datasets\n```\n\n## How to use\n\nAs an nbdev library, `fatai_datasets` supports `import *` (without\nimporting unwanted symbols):\n\n``` python\nfrom fastai_datasets.all import *\n```\n\nHere are a few usage examles:\n\n### Easily load a dataset\n\n``` python\nmnist = MNIST()\nmnist.dls().show_batch()\n```\n\n\n\n### Show the class distribution\n\n``` python\nmnist.plot_class_distribution()\n```\n\n\n\n### Sample a subset\n\nWhole datasets:\n\n``` python\nmnist\n```\n\n [(#60000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]\n (#10000) [(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(7))...]]\n\nSubset:\n\n``` python\nmnist.random_sub_dsets(1000)\n```\n\n [(#861) [(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(6)),(PILImageBW mode=L size=28x28, TensorCategory(7)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(3)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(5)),(PILImageBW mode=L size=28x28, TensorCategory(1))...]\n (#139) [(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(0)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(4)),(PILImageBW mode=L size=28x28, TensorCategory(2)),(PILImageBW mode=L size=28x28, TensorCategory(8)),(PILImageBW mode=L size=28x28, TensorCategory(1)),(PILImageBW mode=L size=28x28, TensorCategory(9))...]]\n\n### Construct a subset based on classes\n\n``` python\ncifar10 = CIFAR10()\ndig_frog_bird = cifar10.by_target['dog'] + cifar10.by_target['frog'] + cifar10.by_target['bird']\ndig_frog_bird.dls().show_batch()\n```\n\n\n\n### Construct a dataset of similarity pairs\n\n``` python\nPairs(cifar10, .01).dls().show_batch()\n```\n\n\n\n\n",
"bugtrack_url": null,
"license": "Apache Software License 2.0",
"summary": "Leveraging fastai to easily load and handle datasets",
"version": "0.0.8",
"project_urls": {
"Homepage": "https://github.com/Irad-Zehavi/fastai-datasets"
},
"split_keywords": [
"nbdev",
"jupyter",
"notebook",
"python"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4f711c414fef82a7627d3f85d8aaf98d3cf8306a0787e7dd434a2aeaf65e3cbd",
"md5": "0bb59337a7e7ab3c053de7fd785160de",
"sha256": "b8fa18badd6ec4424f694f0a21feb384a4babbe2ab8801726068f08e01284859"
},
"downloads": -1,
"filename": "fastai_datasets-0.0.8-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0bb59337a7e7ab3c053de7fd785160de",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 25793,
"upload_time": "2023-06-10T10:06:13",
"upload_time_iso_8601": "2023-06-10T10:06:13.936669Z",
"url": "https://files.pythonhosted.org/packages/4f/71/1c414fef82a7627d3f85d8aaf98d3cf8306a0787e7dd434a2aeaf65e3cbd/fastai_datasets-0.0.8-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a3dedd6bad069b82d20db4fc46f6c809d3e0208f214e4533bff792e4e2caf1c1",
"md5": "42d378ca94f04f59f0b0278fdde3d1da",
"sha256": "d6bc7476474cc842a1e20ab2645af681c569c063dc37ae1f3c910c519b7d7ac5"
},
"downloads": -1,
"filename": "fastai-datasets-0.0.8.tar.gz",
"has_sig": false,
"md5_digest": "42d378ca94f04f59f0b0278fdde3d1da",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 24673,
"upload_time": "2023-06-10T10:06:15",
"upload_time_iso_8601": "2023-06-10T10:06:15.942035Z",
"url": "https://files.pythonhosted.org/packages/a3/de/dd6bad069b82d20db4fc46f6c809d3e0208f214e4533bff792e4e2caf1c1/fastai-datasets-0.0.8.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-10 10:06:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Irad-Zehavi",
"github_project": "fastai-datasets",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fastai-datasets"
}