fastapi-listing


Namefastapi-listing JSON
Version 0.3.3 PyPI version JSON
download
home_pagehttps://github.com/danielhasan1/fastapi-listing
SummaryAdvaned Data Listing Library for FastAPI
upload_time2024-11-25 10:56:03
maintainerNone
docs_urlNone
authorDanish Hasan
requires_python>=3.7
licenseNone
keywords starlette fastapi pydantic sqlalchemy
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            # fastapi-listing

Advanced items listing library that gives you freedom to design really complex listing APIs using component based architecture.

[![.github/workflows/deploy.yml](https://github.com/danielhasan1/fastapi-listing/actions/workflows/deploy.yml/badge.svg)](https://github.com/danielhasan1/fastapi-listing/actions/workflows/deploy.yml)
[![.github/workflows/tests.yml](https://github.com/danielhasan1/fastapi-listing/actions/workflows/tests.yml/badge.svg)](https://github.com/danielhasan1/fastapi-listing/actions/workflows/tests.yml) ![PyPI - Programming Language](https://img.shields.io/pypi/pyversions/fastapi-listing.svg?color=%2334D058)
[![codecov](https://codecov.io/gh/danielhasan1/fastapi-listing/branch/dev/graph/badge.svg?token=U29ZRNAH8I)](https://codecov.io/gh/danielhasan1/fastapi-listing) [![Downloads](https://static.pepy.tech/badge/fastapi-listing)](https://pepy.tech/project/fastapi-listing)

Comes with:
- pre defined filters
- pre defined paginator
- pre defined sorter

## Advantage
- simplify the intricate process of designing and developing complex listing APIs
- Design components(USP) and plug them from anywhere
- Components can be **reusable**
- Best for fast changing needs

## Installing

Using [pip](https://pip.pypa.io/):

```python
pip install fastapi-listing
```

## Quick Example

Attaching example of it running against the [mysql employee db](https://dev.mysql.com/doc/employee/en/) 

There are two ways to implement a listing API using fastapi listing

- inline implementation
- class based implementation

for both we will be needing a dao(data access object) class

### First let's look at inline implementation.

```python
# main.py

from fastapi import FastAPI
from pydantic import BaseModel, Field
from datetime import date

from sqlalchemy import Column, Date, Enum, Integer, String
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import Session

from fastapi_listing.paginator import ListingPage
from fastapi_listing import FastapiListing, MetaInfo
from fastapi_listing.dao import GenericDao


Base = declarative_base()
app = FastAPI()


class Employee(Base):
    __tablename__ = 'employees'

    emp_no = Column(Integer, primary_key=True)
    birth_date = Column(Date, nullable=False)
    first_name = Column(String(14), nullable=False)
    last_name = Column(String(16), nullable=False)
    gender = Column(Enum('M', 'F'), nullable=False)
    hire_date = Column(Date, nullable=False)

# Dao class
class EmployeeDao(GenericDao):
    """write your data layer access logic here. keep it raw!"""
    name = "employee"
    model = Employee # sqlalchemy model class (support for pymongo/tortoise orm is in progress)


class EmployeeListDetails(BaseModel):
    emp_no: int = Field(alias="empid", title="Employee ID")
    birth_date: date = Field(alias="bdt", title="Birth Date")
    first_name: str = Field(alias="fnm", title="First Name")
    last_name: str = Field(alias="lnm", title="Last Name")
    gender: str = Field(alias="gdr", title="Gender")
    hire_date: date = Field(alias="hdt", title="Hiring Date")

    class Config:
        orm_mode = True
        allow_population_by_field_name = True
    

@app.get("/employees", response_model=ListingPage[EmployeeListDetails])
def get_employees(db: Session):
    dao = EmployeeDao(read_db=db)
    # passing pydantic serializer is optional, automatically generates a
    # select query based on pydantic class fields for easy cases like columns of same table
    # if not passed then provide a select query in dao layer
    return FastapiListing(dao=dao, pydantic_serializer=EmployeeListDetails 
                          ).get_response(MetaInfo(default_srt_on="emp_no")) # by default sort in desc order
    # let's say pydantic class contains compute fields then pass custom_fields=True (by default False)
    return FastapiListing(dao=dao,
                          pydantic_serializer=EmployeeListDetails,
                          custom_fields=True # here setting custom field True to avoid unknown attributes error
                          ).get_response(MetaInfo(default_srt_on="emp_no"))
```

Voila 🎉 your very first listing response

![](https://drive.google.com/uc?export=view&id=1amgrAdGP7WvXfiNlCYJZPC9fz4_1CidE)


Auto generated query  doesn't fulfil your use case❓️

```python
# Overwriting default read method in dao class
class EmployeeDao(GenericDao):
    """write your data layer access logic here. keep it raw!"""
    name = "employee"
    model = Employee
    
    def get_default_read(self, fields_to_read: Optional[list]):
        """
        Extend and return your query from here.
        Use it when use cases are comparatively easier than complex.
        Alternatively fastapi-listing provides a robust way to write performance packed queries 
        for complex APIs which we will look at later.
        """
        query = self._read_db.query(Employee)
        return query


@app.get("/employees", response_model=ListingPage[EmployeeListDetails])
def get_employees(db: Session):
    dao = EmployeeDao(read_db=db)
    # note we removed all optional named params here
    return FastapiListing(dao=dao).get_response(MetaInfo(default_srt_on="emp_no"))
```


# Adding client site features

Django admin users gonna love filter feature. But before that lets do a little setup which no once can avoid to support a broad spectrum of clients unless you use native query param format which I doubt.

## Add your custom adaptor class for reading filter/sorter/paginator client request params

Below is the default implementation. You will be writing your own adaptor definition

```python
from typing import Literal
from fastapi_listing.service.adapters import CoreListingParamsAdapter
from fastapi_listing import utils

class YourAdapterClass(CoreListingParamsAdapter): # Extend to add your behaviour
    """Utilise this adapter class to make your remote client site:
    - filter,
    - sorter,
    - paginator.
    query params adapt to fastapi listing library.
    With this you can utilise same listing api to multiple remote client
    even if it's a front end server or other backend server.

    fastapi listing is always going to request one of the following fundamental key if you want to use it
    - sort
    - filter
    - pagination

    supported formats for
    filter:
    simple filter - [{"field":"<key used in filter mapper>", "value":{"search":"<client param>"}}, ...]
    if you are using a range filter -
    [{"field":"<key used in filter mapper>", "value":{"start":"<start range>", "end": "<end range>"}}, ...]
    if you are using a list filter i.e. search on given items
    [{"field":"<key used in filter mapper>", "value":{"list":["<client params>"]}}, ...]

    sort:
    [{"field":<"key used in sort mapper>", "type":"asc or "dsc"}, ...]
    by default single sort allowed you can change it by extending sort interceptor

    pagination:
    {"pageSize": <integer page size>, "page": <integer page number 1 based>}
    """
    
    def get(self, key: Literal["sort", "filter", "pagination"]):
        """
        @param key: Literal["sort", "filter", "pagination"]
        @return: List[Optional[dict]] for filter/sort and dict for paginator
        """
        return utils.dictify_query_params(self.dependency.get(key))

```
### Once your adaptor class is set
 
## Adding filter feature

➡️ lets add filters on Employee for:
1.  gender - return only **Employees** belonging to 'X' gender where X could be anything.
2.  DOB - return **Employees** belonging to a specific range of DOB.
3.  First Name - return **Employees** only starting with specific first names.
```python
from fastapi import Request
from sqlalchemy.orm import Session

from fastapi_listing.paginator import ListingPage
from fastapi_listing.filters import generic_filters # collection of inbuilt filters
from fastapi_listing.factory import filter_factory # register filter against a listing
from fastapi_listing import MetaInfo, FastapiListing


emp_filter_mapper = {
    "gdr": ("Employee.gender", generic_filters.EqualityFilter),
    "bdt": ("Employee.birth_date", generic_filters.MySqlNativeDateFormateRangeFilter),
    "fnm": ("Employee.first_name", generic_filters.StringStartsWithFilter),
}
filter_factory.register_filter_mapper(emp_filter_mapper)


@app.get("/employees", response_model=ListingPage[EmployeeListDetails])
def get_employees(request: Request, db: Session):
    dao = EmployeeDao(read_db=db)
    return FastapiListing(request=request, dao=dao).get_response(
        MetaInfo(default_srt_on="emp_no",
                 filter_mapper=emp_filter_mapper,
                 feature_params_adapter=YourAdapterClass))
    
    # or you dont wanna pass request?
    # extract required data from reqeust and pass it directly 
    params = request.query_params
    filter_, sort_, pagination = params.get("filter"), params.get("sort"), params.get("paginator")
    
    dao = EmployeeDao(read_db=db)
    return FastapiListing(dao=dao).get_response(
        MetaInfo(default_srt_on="emp_no",
                 filter_mapper=emp_filter_mapper,
                 feature_params_adapter=YourAdapterClass,
                 filter=filter_,
                 sort=sort_,
                 paginator=pagination))
    
```

### Let's break it down

**Filter mapper** - a collection of allowed filters on your listing API. Any request outside of this mapper scope
will not be executed for filtering safeguarding you from creepy API users.

`generic_filters` a collection of inbuilt filters supported by sqlalchemy orm
A dictionary is defined with structure:

`{"alias": tuple("sqlalchemy_model.field", filter_implementation)}`

`alias` - A string used by client in case if you wanna avoid actual column names to client site.

`tuple` - will contain two items field name and filter implementation

```python
from fastapi_listing.filters import generic_filters


emp_filter_mapper = {
    "gdr": ("Employee.gender", generic_filters.EqualityFilter),
    "bdt": ("Employee.birth_date", generic_filters.MySqlNativeDateFormateRangeFilter),
    "fnm": ("Employee.first_name", generic_filters.StringStartsWithFilter),
}
```

Register the above mapper with filter factory. 

```python
from fastapi_listing.factory import filter_factory


filter_factory.register_filter_mapper(emp_filter_mapper) # Register in global space or module level.
```

A client could request you like `v1/employees?filter=[{"gdr":"M"}]`

parse the above query_param in your adapter class like `[{"field":"gdr", "value":{"search":"M"}}]` if passed externally as kwarg then access it via `self.extra_context` in your adapter class or if passed request then
access `self.request` directly there.

Assuming everything goes right above will produce a response with items filtered on gender field matching rows with 'M'

**Sort Mapper** - a collection of allowed sort on listing any request outside of this mapper scope will
not be permitted for sort.

Simply define a dictionary with structure `{"alias": "field"}` if sorting on same column them omit model name &
if sorting on a joined table column then add sqlalchemy class name like we did for filter `{"alias":"sqlalchemy_model.field"}`

```python
listing_sort_mapper = {
        "code": "emp_no"
    }
return FastapiListing(dao=dao).get_response(
        MetaInfo(default_srt_on="emp_no",
                 filter_mapper=emp_filter_mapper,
                 sort_mapper=listing_sort_mapper,
                 feature_params_adapter=YourAdapterClass,
                 filter=filter_,
                 sort=sort_,
                 paginator=pagination))

# OR if passing request obj
return FastapiListing(request=request, dao=dao).get_response(
        MetaInfo(default_srt_on="emp_no",
                 filter_mapper=emp_filter_mapper,
                 sort_mapper=listing_sort_mapper,
                 feature_params_adapter=YourAdapterClass))
```

A client could request you like `v1/employees?sort={"code":<some_code:int>}` or followed by filter `v1/employees?filter=[{"gdr":"M"}]&sort={"code":<some_code:int>, "type":"asc"}` 
and the response should contain list items sorted by employee code column in ascending order.

**Note** we didn't registered sort mapper like we did for filter mapper.

Similarly, for paginator `v1/employees?pagination={"page":1, "pageSize":10}` or followed by filter and sort `v1/employees?filter=[{"gdr":"M"}]&sort={"code":<some_code:int>, "type":"asc"}&pagination={"page":1, "pageSize":10}`

Above will produce listing page of items 10 or dynamically client could change page size.

One thing to **Note** here is fastapi listing by default limits the client to reuqest maximum of 50 items at a time to safeguard your database 
if you want to increase/decrease this default limit then simply pass the limit in `MetaInfo`

**You can also change the default page size from 10 to anything you would want**

```python
return FastapiListing(request=request, dao=dao).get_response(
        MetaInfo(default_srt_on="emp_no",
                 filter_mapper=emp_filter_mapper,
                 sort_mapper=listing_sort_mapper,
                 max_page_size=25, # here change max page size
                 default_page_size=10, # here change default page size
                 feature_params_adapter=YourAdapterClass))
```

### Class Based implementation
Quick Example to convey the context

```python
from fastapi import FastAPI

from sqlalchemy import Column, Date, String, ForeignKey
from sqlalchemy.orm import declarative_base
from sqlalchemy.orm import Session, relationship
from fastapi_listing import ListingService, FastapiListing
from fastapi_listing.filters import generic_filters
from fastapi_listing import loader
from fastapi_listing.paginator import ListingPage

Base = declarative_base()
app = FastAPI()

class Title(Base):
    __tablename__ = 'titles'

    emp_no = Column(ForeignKey('employees.emp_no', ondelete='CASCADE'), primary_key=True, nullable=False)
    title = Column(String(50), primary_key=True, nullable=False)
    from_date = Column(Date, primary_key=True, nullable=False)
    to_date = Column(Date)

    employee = relationship('Employee')

    
class EmployeeDao(GenericDao):
    name = "employee"
    model = Employee
    
class TitleDao(GenericDao):
    name = "title"
    model = Title
    
@loader.register()
class EmployeeListingService(ListingService):
    """Class based listing API implementation"""
    filter_mapper = {
        "gdr": ("Employee.gender", generic_filters.EqualityFilter),
        "bdt": ("Employee.birth_date", generic_filters.MySqlNativeDateFormateRangeFilter),
        "fnm": ("Employee.first_name", generic_filters.StringStartsWithFilter),
        "lnm": ("Employee.last_name", generic_filters.StringEndsWithFilter),
        # below feature will require customisation to work at query level
        "desg": ("Employee.Title.title", generic_filters.StringLikeFilter, lambda x: getattr(Title, x)) # registering filter with joined table field
    }

    sort_mapper = {
        "cd": "emp_no"
    }
    default_srt_on = "Employee.emp_no"
    default_dao = EmployeeDao

    def get_listing(self):
        # similar to above inline but instead of passing meta info uncompressed we pass self
        # rest is handled implicityly like filter register
        # one advantage here is every expect is validated so you get error when running server
        resp = FastapiListing(self.request, self.dao, pydantic_serializer=EmployeeListDetails).get_response(self.MetaInfo(self))
        return resp

    
@app.get("/employees", response_model=ListingPage[EmployeeListDetails])
def get_employees(db: Session):
    return EmployeeListingService(read_db=db).get_listing()
```

Check out [docs](https://fastapi-listing.readthedocs.io/en/latest/tutorials.html#adding-filters-to-your-listing-api) for supported list of filters.
Additionally, you can create **custom filters** as well.

## Provided features are not meeting your requirements???

The Applications are endless with customisations

➡️ You can write custom:

* Query
* Filter
* Sorter
* Paginator

You can check out customisation section in docs after going through basics and tutorials.

Check out my other [repo](https://github.com/danielhasan1/test-fastapi-listing/blob/master/app/router/router.py) to see some examples

## Features and Readability hand in hand 🤝

 - Well defined interface for filter, sorter, paginator
 - Support Dependency Injection for easy testing
 - Room to adapt the existing remote client query param semantics
 - Write standardise listing APIs that will be understood by generations of upcoming developers
 - Write listing features which is easy on human mind to extend or understand
 - Break down the most complex listing data APIs into digestible piece of code 

Why readability and code quality matters in one picture...

<img src="https://drive.google.com/uc?export=view&id=1C2ZHltxpdyq4YmBsnbOu4HF9JGt6uMfQ" width="600" height="600"/>

# Documentation
View full documentation at: https://fastapi-listing.readthedocs.io (A work in progress)



# Feedback, Questions?

Any form of feedback and questions are welcome! Please create an issue  💭
[here](https://github.com/danielhasan1/fastapi-listing/issues/new).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/danielhasan1/fastapi-listing",
    "name": "fastapi-listing",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": "starlette, fastapi, pydantic, sqlalchemy",
    "author": "Danish Hasan",
    "author_email": "dh813030@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/11/08/35b4df00e2b812313f190b74a3a8fe916e235963b5ef7cefacaa98a5ab94/fastapi_listing-0.3.3.tar.gz",
    "platform": null,
    "description": "# fastapi-listing\n\nAdvanced items listing library that gives you freedom to design really complex listing APIs using component based architecture.\n\n[![.github/workflows/deploy.yml](https://github.com/danielhasan1/fastapi-listing/actions/workflows/deploy.yml/badge.svg)](https://github.com/danielhasan1/fastapi-listing/actions/workflows/deploy.yml)\n[![.github/workflows/tests.yml](https://github.com/danielhasan1/fastapi-listing/actions/workflows/tests.yml/badge.svg)](https://github.com/danielhasan1/fastapi-listing/actions/workflows/tests.yml) ![PyPI - Programming Language](https://img.shields.io/pypi/pyversions/fastapi-listing.svg?color=%2334D058)\n[![codecov](https://codecov.io/gh/danielhasan1/fastapi-listing/branch/dev/graph/badge.svg?token=U29ZRNAH8I)](https://codecov.io/gh/danielhasan1/fastapi-listing) [![Downloads](https://static.pepy.tech/badge/fastapi-listing)](https://pepy.tech/project/fastapi-listing)\n\nComes with:\n- pre defined filters\n- pre defined paginator\n- pre defined sorter\n\n## Advantage\n- simplify the intricate process of designing and developing complex listing APIs\n- Design components(USP) and plug them from anywhere\n- Components can be **reusable**\n- Best for fast changing needs\n\n## Installing\n\nUsing [pip](https://pip.pypa.io/):\n\n```python\npip install fastapi-listing\n```\n\n## Quick Example\n\nAttaching example of it running against the [mysql employee db](https://dev.mysql.com/doc/employee/en/) \n\nThere are two ways to implement a listing API using fastapi listing\n\n- inline implementation\n- class based implementation\n\nfor both we will be needing a dao(data access object) class\n\n### First let's look at inline implementation.\n\n```python\n# main.py\n\nfrom fastapi import FastAPI\nfrom pydantic import BaseModel, Field\nfrom datetime import date\n\nfrom sqlalchemy import Column, Date, Enum, Integer, String\nfrom sqlalchemy.orm import declarative_base\nfrom sqlalchemy.orm import Session\n\nfrom fastapi_listing.paginator import ListingPage\nfrom fastapi_listing import FastapiListing, MetaInfo\nfrom fastapi_listing.dao import GenericDao\n\n\nBase = declarative_base()\napp = FastAPI()\n\n\nclass Employee(Base):\n    __tablename__ = 'employees'\n\n    emp_no = Column(Integer, primary_key=True)\n    birth_date = Column(Date, nullable=False)\n    first_name = Column(String(14), nullable=False)\n    last_name = Column(String(16), nullable=False)\n    gender = Column(Enum('M', 'F'), nullable=False)\n    hire_date = Column(Date, nullable=False)\n\n# Dao class\nclass EmployeeDao(GenericDao):\n    \"\"\"write your data layer access logic here. keep it raw!\"\"\"\n    name = \"employee\"\n    model = Employee # sqlalchemy model class (support for pymongo/tortoise orm is in progress)\n\n\nclass EmployeeListDetails(BaseModel):\n    emp_no: int = Field(alias=\"empid\", title=\"Employee ID\")\n    birth_date: date = Field(alias=\"bdt\", title=\"Birth Date\")\n    first_name: str = Field(alias=\"fnm\", title=\"First Name\")\n    last_name: str = Field(alias=\"lnm\", title=\"Last Name\")\n    gender: str = Field(alias=\"gdr\", title=\"Gender\")\n    hire_date: date = Field(alias=\"hdt\", title=\"Hiring Date\")\n\n    class Config:\n        orm_mode = True\n        allow_population_by_field_name = True\n    \n\n@app.get(\"/employees\", response_model=ListingPage[EmployeeListDetails])\ndef get_employees(db: Session):\n    dao = EmployeeDao(read_db=db)\n    # passing pydantic serializer is optional, automatically generates a\n    # select query based on pydantic class fields for easy cases like columns of same table\n    # if not passed then provide a select query in dao layer\n    return FastapiListing(dao=dao, pydantic_serializer=EmployeeListDetails \n                          ).get_response(MetaInfo(default_srt_on=\"emp_no\")) # by default sort in desc order\n    # let's say pydantic class contains compute fields then pass custom_fields=True (by default False)\n    return FastapiListing(dao=dao,\n                          pydantic_serializer=EmployeeListDetails,\n                          custom_fields=True # here setting custom field True to avoid unknown attributes error\n                          ).get_response(MetaInfo(default_srt_on=\"emp_no\"))\n```\n\nVoila \ud83c\udf89 your very first listing response\n\n![](https://drive.google.com/uc?export=view&id=1amgrAdGP7WvXfiNlCYJZPC9fz4_1CidE)\n\n\nAuto generated query  doesn't fulfil your use case\u2753\ufe0f\n\n```python\n# Overwriting default read method in dao class\nclass EmployeeDao(GenericDao):\n    \"\"\"write your data layer access logic here. keep it raw!\"\"\"\n    name = \"employee\"\n    model = Employee\n    \n    def get_default_read(self, fields_to_read: Optional[list]):\n        \"\"\"\n        Extend and return your query from here.\n        Use it when use cases are comparatively easier than complex.\n        Alternatively fastapi-listing provides a robust way to write performance packed queries \n        for complex APIs which we will look at later.\n        \"\"\"\n        query = self._read_db.query(Employee)\n        return query\n\n\n@app.get(\"/employees\", response_model=ListingPage[EmployeeListDetails])\ndef get_employees(db: Session):\n    dao = EmployeeDao(read_db=db)\n    # note we removed all optional named params here\n    return FastapiListing(dao=dao).get_response(MetaInfo(default_srt_on=\"emp_no\"))\n```\n\n\n# Adding client site features\n\nDjango admin users gonna love filter feature. But before that lets do a little setup which no once can avoid to support a broad spectrum of clients unless you use native query param format which I doubt.\n\n## Add your custom adaptor class for reading filter/sorter/paginator client request params\n\nBelow is the default implementation. You will be writing your own adaptor definition\n\n```python\nfrom typing import Literal\nfrom fastapi_listing.service.adapters import CoreListingParamsAdapter\nfrom fastapi_listing import utils\n\nclass YourAdapterClass(CoreListingParamsAdapter): # Extend to add your behaviour\n    \"\"\"Utilise this adapter class to make your remote client site:\n    - filter,\n    - sorter,\n    - paginator.\n    query params adapt to fastapi listing library.\n    With this you can utilise same listing api to multiple remote client\n    even if it's a front end server or other backend server.\n\n    fastapi listing is always going to request one of the following fundamental key if you want to use it\n    - sort\n    - filter\n    - pagination\n\n    supported formats for\n    filter:\n    simple filter - [{\"field\":\"<key used in filter mapper>\", \"value\":{\"search\":\"<client param>\"}}, ...]\n    if you are using a range filter -\n    [{\"field\":\"<key used in filter mapper>\", \"value\":{\"start\":\"<start range>\", \"end\": \"<end range>\"}}, ...]\n    if you are using a list filter i.e. search on given items\n    [{\"field\":\"<key used in filter mapper>\", \"value\":{\"list\":[\"<client params>\"]}}, ...]\n\n    sort:\n    [{\"field\":<\"key used in sort mapper>\", \"type\":\"asc or \"dsc\"}, ...]\n    by default single sort allowed you can change it by extending sort interceptor\n\n    pagination:\n    {\"pageSize\": <integer page size>, \"page\": <integer page number 1 based>}\n    \"\"\"\n    \n    def get(self, key: Literal[\"sort\", \"filter\", \"pagination\"]):\n        \"\"\"\n        @param key: Literal[\"sort\", \"filter\", \"pagination\"]\n        @return: List[Optional[dict]] for filter/sort and dict for paginator\n        \"\"\"\n        return utils.dictify_query_params(self.dependency.get(key))\n\n```\n### Once your adaptor class is set\n \n## Adding filter feature\n\n\u27a1\ufe0f lets add filters on Employee for:\n1.  gender - return only **Employees** belonging to 'X' gender where X could be anything.\n2.  DOB - return **Employees** belonging to a specific range of DOB.\n3.  First Name - return **Employees** only starting with specific first names.\n```python\nfrom fastapi import Request\nfrom sqlalchemy.orm import Session\n\nfrom fastapi_listing.paginator import ListingPage\nfrom fastapi_listing.filters import generic_filters # collection of inbuilt filters\nfrom fastapi_listing.factory import filter_factory # register filter against a listing\nfrom fastapi_listing import MetaInfo, FastapiListing\n\n\nemp_filter_mapper = {\n    \"gdr\": (\"Employee.gender\", generic_filters.EqualityFilter),\n    \"bdt\": (\"Employee.birth_date\", generic_filters.MySqlNativeDateFormateRangeFilter),\n    \"fnm\": (\"Employee.first_name\", generic_filters.StringStartsWithFilter),\n}\nfilter_factory.register_filter_mapper(emp_filter_mapper)\n\n\n@app.get(\"/employees\", response_model=ListingPage[EmployeeListDetails])\ndef get_employees(request: Request, db: Session):\n    dao = EmployeeDao(read_db=db)\n    return FastapiListing(request=request, dao=dao).get_response(\n        MetaInfo(default_srt_on=\"emp_no\",\n                 filter_mapper=emp_filter_mapper,\n                 feature_params_adapter=YourAdapterClass))\n    \n    # or you dont wanna pass request?\n    # extract required data from reqeust and pass it directly \n    params = request.query_params\n    filter_, sort_, pagination = params.get(\"filter\"), params.get(\"sort\"), params.get(\"paginator\")\n    \n    dao = EmployeeDao(read_db=db)\n    return FastapiListing(dao=dao).get_response(\n        MetaInfo(default_srt_on=\"emp_no\",\n                 filter_mapper=emp_filter_mapper,\n                 feature_params_adapter=YourAdapterClass,\n                 filter=filter_,\n                 sort=sort_,\n                 paginator=pagination))\n    \n```\n\n### Let's break it down\n\n**Filter mapper** - a collection of allowed filters on your listing API. Any request outside of this mapper scope\nwill not be executed for filtering safeguarding you from creepy API users.\n\n`generic_filters` a collection of inbuilt filters supported by sqlalchemy orm\nA dictionary is defined with structure:\n\n`{\"alias\": tuple(\"sqlalchemy_model.field\", filter_implementation)}`\n\n`alias` - A string used by client in case if you wanna avoid actual column names to client site.\n\n`tuple` - will contain two items field name and filter implementation\n\n```python\nfrom fastapi_listing.filters import generic_filters\n\n\nemp_filter_mapper = {\n    \"gdr\": (\"Employee.gender\", generic_filters.EqualityFilter),\n    \"bdt\": (\"Employee.birth_date\", generic_filters.MySqlNativeDateFormateRangeFilter),\n    \"fnm\": (\"Employee.first_name\", generic_filters.StringStartsWithFilter),\n}\n```\n\nRegister the above mapper with filter factory. \n\n```python\nfrom fastapi_listing.factory import filter_factory\n\n\nfilter_factory.register_filter_mapper(emp_filter_mapper) # Register in global space or module level.\n```\n\nA client could request you like `v1/employees?filter=[{\"gdr\":\"M\"}]`\n\nparse the above query_param in your adapter class like `[{\"field\":\"gdr\", \"value\":{\"search\":\"M\"}}]` if passed externally as kwarg then access it via `self.extra_context` in your adapter class or if passed request then\naccess `self.request` directly there.\n\nAssuming everything goes right above will produce a response with items filtered on gender field matching rows with 'M'\n\n**Sort Mapper** - a collection of allowed sort on listing any request outside of this mapper scope will\nnot be permitted for sort.\n\nSimply define a dictionary with structure `{\"alias\": \"field\"}` if sorting on same column them omit model name &\nif sorting on a joined table column then add sqlalchemy class name like we did for filter `{\"alias\":\"sqlalchemy_model.field\"}`\n\n```python\nlisting_sort_mapper = {\n        \"code\": \"emp_no\"\n    }\nreturn FastapiListing(dao=dao).get_response(\n        MetaInfo(default_srt_on=\"emp_no\",\n                 filter_mapper=emp_filter_mapper,\n                 sort_mapper=listing_sort_mapper,\n                 feature_params_adapter=YourAdapterClass,\n                 filter=filter_,\n                 sort=sort_,\n                 paginator=pagination))\n\n# OR if passing request obj\nreturn FastapiListing(request=request, dao=dao).get_response(\n        MetaInfo(default_srt_on=\"emp_no\",\n                 filter_mapper=emp_filter_mapper,\n                 sort_mapper=listing_sort_mapper,\n                 feature_params_adapter=YourAdapterClass))\n```\n\nA client could request you like `v1/employees?sort={\"code\":<some_code:int>}` or followed by filter `v1/employees?filter=[{\"gdr\":\"M\"}]&sort={\"code\":<some_code:int>, \"type\":\"asc\"}` \nand the response should contain list items sorted by employee code column in ascending order.\n\n**Note** we didn't registered sort mapper like we did for filter mapper.\n\nSimilarly, for paginator `v1/employees?pagination={\"page\":1, \"pageSize\":10}` or followed by filter and sort `v1/employees?filter=[{\"gdr\":\"M\"}]&sort={\"code\":<some_code:int>, \"type\":\"asc\"}&pagination={\"page\":1, \"pageSize\":10}`\n\nAbove will produce listing page of items 10 or dynamically client could change page size.\n\nOne thing to **Note** here is fastapi listing by default limits the client to reuqest maximum of 50 items at a time to safeguard your database \nif you want to increase/decrease this default limit then simply pass the limit in `MetaInfo`\n\n**You can also change the default page size from 10 to anything you would want**\n\n```python\nreturn FastapiListing(request=request, dao=dao).get_response(\n        MetaInfo(default_srt_on=\"emp_no\",\n                 filter_mapper=emp_filter_mapper,\n                 sort_mapper=listing_sort_mapper,\n                 max_page_size=25, # here change max page size\n                 default_page_size=10, # here change default page size\n                 feature_params_adapter=YourAdapterClass))\n```\n\n### Class Based implementation\nQuick Example to convey the context\n\n```python\nfrom fastapi import FastAPI\n\nfrom sqlalchemy import Column, Date, String, ForeignKey\nfrom sqlalchemy.orm import declarative_base\nfrom sqlalchemy.orm import Session, relationship\nfrom fastapi_listing import ListingService, FastapiListing\nfrom fastapi_listing.filters import generic_filters\nfrom fastapi_listing import loader\nfrom fastapi_listing.paginator import ListingPage\n\nBase = declarative_base()\napp = FastAPI()\n\nclass Title(Base):\n    __tablename__ = 'titles'\n\n    emp_no = Column(ForeignKey('employees.emp_no', ondelete='CASCADE'), primary_key=True, nullable=False)\n    title = Column(String(50), primary_key=True, nullable=False)\n    from_date = Column(Date, primary_key=True, nullable=False)\n    to_date = Column(Date)\n\n    employee = relationship('Employee')\n\n    \nclass EmployeeDao(GenericDao):\n    name = \"employee\"\n    model = Employee\n    \nclass TitleDao(GenericDao):\n    name = \"title\"\n    model = Title\n    \n@loader.register()\nclass EmployeeListingService(ListingService):\n    \"\"\"Class based listing API implementation\"\"\"\n    filter_mapper = {\n        \"gdr\": (\"Employee.gender\", generic_filters.EqualityFilter),\n        \"bdt\": (\"Employee.birth_date\", generic_filters.MySqlNativeDateFormateRangeFilter),\n        \"fnm\": (\"Employee.first_name\", generic_filters.StringStartsWithFilter),\n        \"lnm\": (\"Employee.last_name\", generic_filters.StringEndsWithFilter),\n        # below feature will require customisation to work at query level\n        \"desg\": (\"Employee.Title.title\", generic_filters.StringLikeFilter, lambda x: getattr(Title, x)) # registering filter with joined table field\n    }\n\n    sort_mapper = {\n        \"cd\": \"emp_no\"\n    }\n    default_srt_on = \"Employee.emp_no\"\n    default_dao = EmployeeDao\n\n    def get_listing(self):\n        # similar to above inline but instead of passing meta info uncompressed we pass self\n        # rest is handled implicityly like filter register\n        # one advantage here is every expect is validated so you get error when running server\n        resp = FastapiListing(self.request, self.dao, pydantic_serializer=EmployeeListDetails).get_response(self.MetaInfo(self))\n        return resp\n\n    \n@app.get(\"/employees\", response_model=ListingPage[EmployeeListDetails])\ndef get_employees(db: Session):\n    return EmployeeListingService(read_db=db).get_listing()\n```\n\nCheck out [docs](https://fastapi-listing.readthedocs.io/en/latest/tutorials.html#adding-filters-to-your-listing-api) for supported list of filters.\nAdditionally, you can create **custom filters** as well.\n\n## Provided features are not meeting your requirements???\n\nThe Applications are endless with customisations\n\n\u27a1\ufe0f You can write custom:\n\n* Query\n* Filter\n* Sorter\n* Paginator\n\nYou can check out customisation section in docs after going through basics and tutorials.\n\nCheck out my other [repo](https://github.com/danielhasan1/test-fastapi-listing/blob/master/app/router/router.py) to see some examples\n\n## Features and Readability hand in hand \ud83e\udd1d\n\n - Well defined interface for filter, sorter, paginator\n - Support Dependency Injection for easy testing\n - Room to adapt the existing remote client query param semantics\n - Write standardise listing APIs that will be understood by generations of upcoming developers\n - Write listing features which is easy on human mind to extend or understand\n - Break down the most complex listing data APIs into digestible piece of code \n\nWhy readability and code quality matters in one picture...\n\n<img src=\"https://drive.google.com/uc?export=view&id=1C2ZHltxpdyq4YmBsnbOu4HF9JGt6uMfQ\" width=\"600\" height=\"600\"/>\n\n# Documentation\nView full documentation at: https://fastapi-listing.readthedocs.io (A work in progress)\n\n\n\n# Feedback, Questions?\n\nAny form of feedback and questions are welcome! Please create an issue  \ud83d\udcad\n[here](https://github.com/danielhasan1/fastapi-listing/issues/new).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Advaned Data Listing Library for FastAPI",
    "version": "0.3.3",
    "project_urls": {
        "Homepage": "https://github.com/danielhasan1/fastapi-listing"
    },
    "split_keywords": [
        "starlette",
        " fastapi",
        " pydantic",
        " sqlalchemy"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ef76c974e6dcac5e88835969cade05d0d02665cbc7a0ac3103c29c9394cc9bee",
                "md5": "10eb793abf2feb7f75854b1c8bf70e79",
                "sha256": "e2fa19488bcf86f7be9caa5248633f30c9846ff537c97c7f7a17e29ea35681fe"
            },
            "downloads": -1,
            "filename": "fastapi_listing-0.3.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "10eb793abf2feb7f75854b1c8bf70e79",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 53539,
            "upload_time": "2024-11-25T10:56:02",
            "upload_time_iso_8601": "2024-11-25T10:56:02.067949Z",
            "url": "https://files.pythonhosted.org/packages/ef/76/c974e6dcac5e88835969cade05d0d02665cbc7a0ac3103c29c9394cc9bee/fastapi_listing-0.3.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "110835b4df00e2b812313f190b74a3a8fe916e235963b5ef7cefacaa98a5ab94",
                "md5": "d0d75f8e5f2f056b062a08deec1f2a91",
                "sha256": "103d9a02126a4361918f6dcfadaa9a97d4698684239118be44e5cada783068c1"
            },
            "downloads": -1,
            "filename": "fastapi_listing-0.3.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d0d75f8e5f2f056b062a08deec1f2a91",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 43636,
            "upload_time": "2024-11-25T10:56:03",
            "upload_time_iso_8601": "2024-11-25T10:56:03.744383Z",
            "url": "https://files.pythonhosted.org/packages/11/08/35b4df00e2b812313f190b74a3a8fe916e235963b5ef7cefacaa98a5ab94/fastapi_listing-0.3.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-25 10:56:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "danielhasan1",
    "github_project": "fastapi-listing",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "lcname": "fastapi-listing"
}
        
Elapsed time: 0.32337s