<h1 align="center">
<br>
<img src="https://raw.githubusercontent.com/itsmeadarsh2008/fastbench/main/fastbench.svg" width="200" height="200">
<br>
FastBench
<br>
<img alt="PyPI - Downloads" src="https://img.shields.io/pypi/dm/fastbench">
<img alt="GitHub repo size" src="https://img.shields.io/github/repo-size/itsmeadarsh2008/fastbench">
<br>
</h1>
FastBench is a high-performance Python package for benchmarking code execution time, CPU usage, and memory usage. It's implemented in Python for simplicity and provides a simple API for measuring the performance of your Python code.
## ✨ Features
- ⏱️ Measure the execution time of a function or code block
- 📊 Track CPU usage during code execution
- 🖥️ Monitor memory usage during code execution
- ⚡ Lightweight and fast
- 🔄 Simple and easy-to-use API
## Installation
You can install FastBench via pip:
```bash
pip install fastbench
```
## Usage
Here's an example of how to use FastBench to benchmark Python code:
```python
from fastbench import mt, mc, mm
# Define a sample function for testing
def sample_function(n):
return sum(range(n))
# Test the mt function (measure execution time)
time_taken = mt(sample_function, n=1000000)
print("Time taken:", time_taken)
# Test the mc function (measure CPU usage)
cpu_usage = mc(sample_function, n=1000000)
print("CPU usage:", cpu_usage)
# Test the mm function (measure memory usage)
memory_usage = mm(sample_function, n=1000000)
print("Memory usage:", memory_usage)
```
## Contributing
Contributions are welcome! Check out the [Contribution Guidelines](https://github.com/itsmeadarsh2008/fastbench/blob/main/CONTRIBUTING.md).
## License
This project is licensed under the MIT License - see the [LICENSE](https://github.com/itsmeadarsh2008/fastbench?tab=MIT-1-ov-file) file for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/itsmeadarsh2008/fastbench",
"name": "fastbench",
"maintainer": null,
"docs_url": null,
"requires_python": "<4.0,>=3.8",
"maintainer_email": null,
"keywords": "bench, fastbench, benchmark, pure, python, simple, performance, package, code, execution, time, cpu, memory, usage, lightweight, api, measure, function, track, monitor, test, efficiency, speed, algorithm, script, development, debugging, optimized, library, analyze, profile, scalable, reliable, tool, optimizations, profiling, debug, evaluate, performance testing, profiler, codebase, analytical, scalability, efficiency, analyzing, optimization, code optimization, proficiency, analytic, performance analysis",
"author": "Adarsh Gourab Mahalik",
"author_email": "gourabmahalikadarsh@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/cb/94/47c99410c99756729dd4319581153638c9c1de6b78835178a0f9a6e5ceb2/fastbench-0.1.5.tar.gz",
"platform": null,
"description": "<h1 align=\"center\">\n <br>\n <img src=\"https://raw.githubusercontent.com/itsmeadarsh2008/fastbench/main/fastbench.svg\" width=\"200\" height=\"200\">\n <br>\n FastBench\n <br>\n <img alt=\"PyPI - Downloads\" src=\"https://img.shields.io/pypi/dm/fastbench\">\n <img alt=\"GitHub repo size\" src=\"https://img.shields.io/github/repo-size/itsmeadarsh2008/fastbench\">\n <br>\n</h1>\n\nFastBench is a high-performance Python package for benchmarking code execution time, CPU usage, and memory usage. It's implemented in Python for simplicity and provides a simple API for measuring the performance of your Python code.\n\n## \u2728 Features\n\n- \u23f1\ufe0f Measure the execution time of a function or code block\n- \ud83d\udcca Track CPU usage during code execution\n- \ud83d\udda5\ufe0f Monitor memory usage during code execution\n- \u26a1 Lightweight and fast\n- \ud83d\udd04 Simple and easy-to-use API\n\n## Installation\n\nYou can install FastBench via pip:\n\n```bash\npip install fastbench\n```\n\n## Usage\n\nHere's an example of how to use FastBench to benchmark Python code:\n\n```python\nfrom fastbench import mt, mc, mm\n\n# Define a sample function for testing\ndef sample_function(n):\n\u00a0\u00a0return sum(range(n))\n\n# Test the mt function (measure execution time)\ntime_taken = mt(sample_function, n=1000000)\nprint(\"Time taken:\", time_taken)\n\n# Test the mc function (measure CPU usage)\ncpu_usage = mc(sample_function, n=1000000)\nprint(\"CPU usage:\", cpu_usage)\n\n# Test the mm function (measure memory usage)\nmemory_usage = mm(sample_function, n=1000000)\nprint(\"Memory usage:\", memory_usage)\n```\n\n## Contributing\n\nContributions are welcome! Check out the [Contribution Guidelines](https://github.com/itsmeadarsh2008/fastbench/blob/main/CONTRIBUTING.md).\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](https://github.com/itsmeadarsh2008/fastbench?tab=MIT-1-ov-file) file for details.",
"bugtrack_url": null,
"license": "MIT",
"summary": "A pure-python based benchmarking package for Python \ud83e\udd2a",
"version": "0.1.5",
"project_urls": {
"Bug Tracker": "https://github.com/itsmeadarsh2008/fastbench/issues",
"Homepage": "https://github.com/itsmeadarsh2008/fastbench",
"Repository": "https://github.com/itsmeadarsh2008/fastbench.git"
},
"split_keywords": [
"bench",
" fastbench",
" benchmark",
" pure",
" python",
" simple",
" performance",
" package",
" code",
" execution",
" time",
" cpu",
" memory",
" usage",
" lightweight",
" api",
" measure",
" function",
" track",
" monitor",
" test",
" efficiency",
" speed",
" algorithm",
" script",
" development",
" debugging",
" optimized",
" library",
" analyze",
" profile",
" scalable",
" reliable",
" tool",
" optimizations",
" profiling",
" debug",
" evaluate",
" performance testing",
" profiler",
" codebase",
" analytical",
" scalability",
" efficiency",
" analyzing",
" optimization",
" code optimization",
" proficiency",
" analytic",
" performance analysis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "630a7a94a0ee9d968235fc57f494cb20539978c2af7f05f259f9946dfbb38335",
"md5": "9652ee9a87e2379332fd95828408b532",
"sha256": "67938716a63c62fe12ab4c4d707103ebcba67682ce5a2abac554cd1eed4e1867"
},
"downloads": -1,
"filename": "fastbench-0.1.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "9652ee9a87e2379332fd95828408b532",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4.0,>=3.8",
"size": 3249,
"upload_time": "2024-04-28T04:26:14",
"upload_time_iso_8601": "2024-04-28T04:26:14.731077Z",
"url": "https://files.pythonhosted.org/packages/63/0a/7a94a0ee9d968235fc57f494cb20539978c2af7f05f259f9946dfbb38335/fastbench-0.1.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb9447c99410c99756729dd4319581153638c9c1de6b78835178a0f9a6e5ceb2",
"md5": "22494a70dbd7e80ba94d22f4662cdccd",
"sha256": "010ea07a212622a085c5c6750817b5203f96b9d67d99494c27c4d2cab6898e80"
},
"downloads": -1,
"filename": "fastbench-0.1.5.tar.gz",
"has_sig": false,
"md5_digest": "22494a70dbd7e80ba94d22f4662cdccd",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4.0,>=3.8",
"size": 3103,
"upload_time": "2024-04-28T04:26:15",
"upload_time_iso_8601": "2024-04-28T04:26:15.715042Z",
"url": "https://files.pythonhosted.org/packages/cb/94/47c99410c99756729dd4319581153638c9c1de6b78835178a0f9a6e5ceb2/fastbench-0.1.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-04-28 04:26:15",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "itsmeadarsh2008",
"github_project": "fastbench",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fastbench"
}