# fastbootstrap
Fast Python implementation of statistical bootstrap
___
## Installation
```bash
pip install fastbootstrap
```
___
## Usage
```python
import numpy as np
from fastbootstrap.bootstrap import two_sample_bootstrap
n = 10000
sample_1 = np.random.exponential(scale=1 / 0.001, size=n)
sample_2 = np.random.exponential(scale=1 / 0.00101, size=n)
p_value, boot_mean, boot_conf_interval = two_sample_bootstrap(sample_1, sample_2, plot=True)
```
![img.png](img.png)
___
Check interactive notebook [here](https://nbviewer.org/github/timofeytkachenko/bootstrap/blob/main/bootstrap_experiment.ipynb)
Raw data
{
"_id": null,
"home_page": "https://github.com/timofeytkachenko/fastbootstrap",
"name": "fastbootstrap",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "",
"keywords": "bootstrap fast_bootstrap",
"author": "Timofey Tkachenko",
"author_email": "timofey_tkachenko@pm.me",
"download_url": "https://files.pythonhosted.org/packages/43/64/6e3a3d7354ab51631d5cf2c750984668bef4a99c0ed0203dcf1da68bdf64/fastbootstrap-1.0.21.tar.gz",
"platform": null,
"description": "# fastbootstrap\nFast Python implementation of statistical bootstrap\n___\n## Installation\n```bash\npip install fastbootstrap\n```\n___\n## Usage\n```python\nimport numpy as np\nfrom fastbootstrap.bootstrap import two_sample_bootstrap\n\nn = 10000\n\nsample_1 = np.random.exponential(scale=1 / 0.001, size=n)\nsample_2 = np.random.exponential(scale=1 / 0.00101, size=n)\n\np_value, boot_mean, boot_conf_interval = two_sample_bootstrap(sample_1, sample_2, plot=True)\n```\n![img.png](img.png)\n___\nCheck interactive notebook [here](https://nbviewer.org/github/timofeytkachenko/bootstrap/blob/main/bootstrap_experiment.ipynb)\n",
"bugtrack_url": null,
"license": "",
"summary": "Fast Python implementation of statistical bootstrap",
"version": "1.0.21",
"project_urls": {
"Homepage": "https://github.com/timofeytkachenko/fastbootstrap"
},
"split_keywords": [
"bootstrap",
"fast_bootstrap"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "c09eaa22ca3faf000de011fd6cf85bec1125cb3286e65e01bbea6772a35f8154",
"md5": "513ccb1a43f6328b1187f467fe83ebd7",
"sha256": "2a7f33ca732dc0bab93ae4673a15c97138c8fd4a504893a56f08b1fbcabfffa9"
},
"downloads": -1,
"filename": "fastbootstrap-1.0.21-py3-none-any.whl",
"has_sig": false,
"md5_digest": "513ccb1a43f6328b1187f467fe83ebd7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 9081,
"upload_time": "2024-02-28T15:45:29",
"upload_time_iso_8601": "2024-02-28T15:45:29.457501Z",
"url": "https://files.pythonhosted.org/packages/c0/9e/aa22ca3faf000de011fd6cf85bec1125cb3286e65e01bbea6772a35f8154/fastbootstrap-1.0.21-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "43646e3a3d7354ab51631d5cf2c750984668bef4a99c0ed0203dcf1da68bdf64",
"md5": "36082e9012e9a7adb7315462383a08c0",
"sha256": "41a602a9f5e3ec8296c894142f69c92bfe8c76c209a71628e8d17d02e31668e6"
},
"downloads": -1,
"filename": "fastbootstrap-1.0.21.tar.gz",
"has_sig": false,
"md5_digest": "36082e9012e9a7adb7315462383a08c0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 8933,
"upload_time": "2024-02-28T15:45:31",
"upload_time_iso_8601": "2024-02-28T15:45:31.958328Z",
"url": "https://files.pythonhosted.org/packages/43/64/6e3a3d7354ab51631d5cf2c750984668bef4a99c0ed0203dcf1da68bdf64/fastbootstrap-1.0.21.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-28 15:45:31",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "timofeytkachenko",
"github_project": "fastbootstrap",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "jupyter",
"specs": [
[
"==",
"1.0.0"
]
]
},
{
"name": "ipython",
"specs": [
[
"==",
"8.21.0"
]
]
},
{
"name": "matplotlib",
"specs": [
[
"==",
"3.8.3"
]
]
},
{
"name": "plotly",
"specs": [
[
"==",
"5.19.0"
]
]
},
{
"name": "numpy",
"specs": [
[
"==",
"1.26.4"
]
]
},
{
"name": "scipy",
"specs": [
[
"==",
"1.12.0"
]
]
},
{
"name": "pandas",
"specs": [
[
"==",
"2.2.0"
]
]
},
{
"name": "tqdm",
"specs": [
[
"==",
"4.66.2"
]
]
},
{
"name": "multiprocess",
"specs": [
[
"==",
"0.70.16"
]
]
}
],
"lcname": "fastbootstrap"
}