## The update statement
```text
2023-10-28 support more torch well known datatasets
2023-07-08: support some nested case
2023-07-02: support arrow parquet
2023-04-28: fix lmdb mutiprocess
2023-02-13: add TopDataset with iterable_dataset and patch
2022-12-07: modify a bug for randomdataset for batch reminder
2022-11-07: add numpy writer and parser,add memory writer and parser
2022-10-29: add kv dataset
```
## usage
[numpy_io](https://github.com/ssbuild/numpy_io)
## Install
```commandline
pip install -U fastdatasets
```
### 1. Record Write
```python
import data_serialize
from fastdatasets.record import load_dataset, gfile,TFRecordOptions, TFRecordCompressionType, TFRecordWriter
# Example Features结构兼容tensorflow.dataset
def test_write_featrue():
options = 'GZIP'
def test_write(filename, N=3, context='aaa'):
with TFRecordWriter(filename, options=options) as file_writer:
for _ in range(N):
val1 = data_serialize.Int64List(value=[1, 2, 3] * 20)
val2 = data_serialize.FloatList(value=[1, 2, 3] * 20)
val3 = data_serialize.BytesList(value=[b'The china', b'boy'])
featrue = data_serialize.Features(feature=
{
"item_0": data_serialize.Feature(int64_list=val1),
"item_1": data_serialize.Feature(float_list=val2),
"item_2": data_serialize.Feature(bytes_list=val3)
}
)
example = data_serialize.Example(features=featrue)
file_writer.write(example.SerializeToString())
test_write('d:/example.tfrecords0', 3, 'file0')
test_write('d:/example.tfrecords1', 10, 'file1')
test_write('d:/example.tfrecords2', 12, 'file2')
# 写任意字符串
def test_write_string():
options = 'GZIP'
def test_write(filename, N=3, context='aaa'):
with TFRecordWriter(filename, options=options) as file_writer:
for _ in range(N):
# x, y = np.random.random(), np.random.random()
file_writer.write(context + '____' + str(_))
test_write('d:/example.tfrecords0', 3, 'file0')
test_write('d:/example.tfrecords1', 10, 'file1')
test_write('d:/example.tfrecords2', 12, 'file2')
```
### 2. record Simple Writer Demo
```python
# @Time : 2022/9/18 23:27
import pickle
import data_serialize
import numpy as np
from fastdatasets.record import load_dataset
from fastdatasets.record import RECORD, WriterObject,FeatureWriter,StringWriter,PickleWriter,DataType,NumpyWriter
filename= r'd:\\example_writer.record'
def test_writer(filename):
print('test_feature ...')
options = RECORD.TFRecordOptions(compression_type='GZIP')
f = NumpyWriter(filename,options=options)
values = []
n = 30
for i in range(n):
train_node = {
"index": np.asarray(i, dtype=np.int64),
'image': np.random.rand(3, 4),
'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),
'bdata': np.asarray(b'11111111asdadasdasdaa')
}
values.append(train_node)
if (i + 1) % 10000 == 0:
f.write_batch( values)
values.clear()
if len(values):
f.write_batch(values)
f.close()
def test_iterable(filename):
options = RECORD.TFRecordOptions(compression_type='GZIP')
datasets = load_dataset.IterableDataset(filename, options=options).parse_from_numpy_writer()
for i, d in enumerate(datasets):
print(i, d)
def test_random(filename):
options = RECORD.TFRecordOptions(compression_type='GZIP')
datasets = load_dataset.RandomDataset(filename, options=options).parse_from_numpy_writer()
print(len(datasets))
for i in range(len(datasets)):
d = datasets[i]
print(i, d)
test_writer(filename)
test_iterable(filename)
```
### 3. IterableDataset demo
```python
import data_serialize
from fastdatasets.record import load_dataset, gfile, RECORD
data_path = gfile.glob('d:/example.tfrecords*')
options = RECORD.TFRecordOptions(compression_type=None)
base_dataset = load_dataset.IterableDataset(data_path, cycle_length=1,
block_length=1,
buffer_size=128,
options=options,
with_share_memory=True)
def test_batch():
num = 0
for _ in base_dataset:
num += 1
print('base_dataset num', num)
base_dataset.reset()
ds = base_dataset.repeat(2).repeat(2).repeat(3).map(lambda x: x + bytes('_aaaaaaaaaaaaaa', encoding='utf-8'))
num = 0
for _ in ds:
num += 1
print('repeat(2).repeat(2).repeat(3) num ', num)
def test_torch():
def filter_fn(x):
if x == b'file2____2':
return True
return False
base_dataset.reset()
dataset = base_dataset.filter(filter_fn).interval(2, 0)
i = 0
for d in dataset:
i += 1
print(i, d)
base_dataset.reset()
dataset = base_dataset.batch(3)
i = 0
for d in dataset:
i += 1
print(i, d)
# torch.utils.data.IterableDataset
from fastdatasets.torch_dataset import IterableDataset
dataset.reset()
ds = IterableDataset(dataset=dataset)
for d in ds:
print(d)
def test_mutiprocess():
print('mutiprocess 0...')
base_dataset.reset()
dataset = base_dataset.shard(num_shards=3, index=0)
i = 0
for d in dataset:
i += 1
print(i, d)
print('mutiprocess 1...')
base_dataset.reset()
dataset = base_dataset.shard(num_shards=3, index=1)
i = 0
for d in dataset:
i += 1
print(i, d)
print('mutiprocess 2...')
base_dataset.reset()
dataset = base_dataset.shard(num_shards=3, index=2)
i = 0
for d in dataset:
i += 1
print(i, d)
```
### 4. RandomDataset demo
```python
from fastdatasets.record import load_dataset, gfile, RECORD
data_path = gfile.glob('d:/example.tfrecords*')
options = RECORD.TFRecordOptions(compression_type=None)
dataset = load_dataset.RandomDataset(data_path, options=options,
with_share_memory=True)
dataset = dataset.map(lambda x: x + b"adasdasdasd")
print(len(dataset))
for i in range(len(dataset)):
print(i + 1, dataset[i])
print('batch...')
dataset = dataset.batch(7)
for i in range(len(dataset)):
print(i + 1, dataset[i])
print('unbatch...')
dataset = dataset.unbatch()
for i in range(len(dataset)):
print(i + 1, dataset[i])
print('shuffle...')
dataset = dataset.shuffle(10)
for i in range(len(dataset)):
print(i + 1, dataset[i])
print('map...')
dataset = dataset.map(transform_fn=lambda x: x + b'aa22222222222222222222222222222')
for i in range(len(dataset)):
print(i + 1, dataset[i])
print('torch Dataset...')
from fastdatasets.torch_dataset import Dataset
d = Dataset(dataset)
for i in range(len(d)):
print(i + 1, d[i])
```
### 5. leveldb dataset
```python
# @Time : 2022/10/27 20:37
# @Author : tk
import numpy as np
from tqdm import tqdm
from fastdatasets.leveldb import DB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter
db_path = 'd:\\example_leveldb_numpy'
def test_write(db_path):
options = DB.LeveldbOptions(create_if_missing=True,error_if_exists=False)
f = NumpyWriter(db_path, options = options)
keys,values = [],[]
n = 30
for i in range(n):
train_node = {
"index":np.asarray(i,dtype=np.int64),
'image': np.random.rand(3,4),
'labels': np.random.randint(0,21128,size=(10),dtype=np.int64),
'bdata': np.asarray(b'11111111asdadasdasdaa')
}
keys.append('input{}'.format(i))
values.append(train_node)
if (i+1) % 10000 == 0:
f.put_batch(keys,values)
keys.clear()
values.clear()
if len(keys):
f.put_batch(keys, values)
f.get_writer.put('total_num',str(n))
f.close()
def test_random(db_path):
options = DB.LeveldbOptions(create_if_missing=False, error_if_exists=False)
dataset = load_dataset.RandomDataset(db_path,
data_key_prefix_list=('input',),
num_key='total_num',
options = options)
dataset = dataset.parse_from_numpy_writer().shuffle(10)
print(len(dataset))
for i in tqdm(range(len(dataset)),total=len(dataset)):
d = dataset[i]
print(i,d)
test_write(db_path)
test_random(db_path)
```
### 6. lmdb dataset
```python
# @Time : 2022/10/27 20:37
# @Author : tk
import numpy as np
from tqdm import tqdm
from fastdatasets.lmdb import DB,LMDB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter
db_path = 'd:\\example_lmdb_numpy'
def test_write(db_path):
options = DB.LmdbOptions(env_open_flag = 0,
env_open_mode = 0o664, # 8进制表示
txn_flag = 0,
dbi_flag = 0,
put_flag = 0)
f = NumpyWriter(db_path, options = options,map_size=1024 * 1024 * 1024)
keys, values = [], []
n = 30
for i in range(n):
train_node = {
'image': np.random.rand(3, 4),
'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),
'bdata': np.asarray(b'11111111asdadasdasdaa')
}
keys.append('input{}'.format(i))
values.append(train_node)
if (i + 1) % 10000 == 0:
f.put_batch(keys, values)
keys.clear()
values.clear()
if len(keys):
f.put_batch(keys, values)
f.get_writer.put('total_num',str(n))
f.close()
def test_random(db_path):
options = DB.LmdbOptions(env_open_flag=DB.LmdbFlag.MDB_RDONLY,
env_open_mode=0o664, # 8进制表示
txn_flag=LMDB.LmdbFlag.MDB_RDONLY,
dbi_flag=0,
put_flag=0)
dataset = load_dataset.RandomDataset(db_path,
data_key_prefix_list=('input',),
num_key='total_num',
options = options)
dataset = dataset.parse_from_numpy_writer().shuffle(10)
print(len(dataset))
for i in tqdm(range(len(dataset)), total=len(dataset)):
d = dataset[i]
print(d)
test_write(db_path)
test_random(db_path)
```
### 7. arrow dataset
```python
from fastdatasets.arrow.writer import PythonWriter
from fastdatasets.arrow.dataset import load_dataset,arrow
path_file = 'd:/tmp/data.arrow'
with_stream = True
def test_write():
fs = PythonWriter(path_file,
schema={'id': 'int32',
'text': 'str',
'map': 'map',
'map2': 'map_list'
},
with_stream=with_stream,
options=None)
for i in range(2):
data = {
"id": list(range(i * 3,(i+ 1) * 3)),
'text': ['asdasdasdas' + str(i) for i in range(3)],
'map': [
{"a": "aa1" + str(i), "b": "bb1", "c": "ccccccc"},
{"a": "aa2", "b": "bb2", "c": "ccccccc"},
{"a": "aa3", "b": "bb3", "c": "ccccccc"},
],
'map2': [
[
{"a": "11" + str(i), "b": "bb", "c": "ccccccc"},
{"a": "12", "b": "bb", "c": "ccccccc"},
{"a": "13", "b": "bb", "c": "ccccccc"},
],
[
{"a": "21", "b": "bb", "c": "ccccccc"},
{"a": "22", "b": "bb", "c": "ccccccc"},
],
[
{"a": "31", "b": "bb", "c": "ccccccc"},
{"a": "32", "b": "bb", "c": "ccccccc"},
{"a": "32", "b": "bb", "c": "ccccccc22222222222222"},
]
]
}
# fs.write_batch(data.keys(),data.values())
status = fs.write_batch(data.keys(),data.values())
assert status.ok(),status.message()
fs.close()
def test_random():
dataset = load_dataset.RandomDataset(path_file,with_share_memory=not with_stream)
print('total', len(dataset))
for i in range(len(dataset)):
print(i,dataset[i])
def test_read_iter():
dataset = load_dataset.IterableDataset(path_file,with_share_memory=not with_stream,batch_size=1)
for d in dataset:
print('iter',d)
test_write()
test_random()
test_read_iter()
```
### 8. parquet dataset
```python
from fastdatasets.parquet.writer import PythonWriter
from fastdatasets.parquet.dataset import load_dataset
from tfrecords.python.io.arrow import ParquetReader,arrow
path_file = 'd:/tmp/data.parquet'
def test_write():
fs = PythonWriter(path_file,
schema={'id': 'int32',
'text': 'str',
'map': 'map',
'map2': 'map_list'
},
parquet_options=dict(write_batch_size = 10))
for i in range(2):
data = {
"id": list(range(i * 3, (i + 1) * 3)),
'text': ['asdasdasdas' + str(i) for i in range(3)],
'map': [
{"a": "aa1", "b": "bb1", "c": "ccccccc"},
{"a": "aa2", "b": "bb2", "c": "ccccccc"},
{"a": "aa3", "b": "bb3", "c": "ccccccc"},
],
'map2': [
[
{"a": "11", "b": "bb", "c": "ccccccc"},
{"a": "12", "b": "bb", "c": "ccccccc"},
{"a": "13", "b": "bb", "c": "ccccccc"},
],
[
{"a": "21", "b": "bb", "c": "ccccccc"},
{"a": "22", "b": "bb", "c": "ccccccc"},
],
[
{"a": "31", "b": "bb", "c": "ccccccc"},
{"a": "32", "b": "bb", "c": "ccccccc"},
{"a": "32", "b": "bb", "c": "ccccccc22222222222222"},
]
]
}
# fs.write_batch(data.keys(),data.values())
fs.write_table(data.keys(),data.values())
fs.close()
def test_random():
dataset = load_dataset.RandomDataset(path_file)
print('total', len(dataset))
for i in range(len(dataset)):
print(dataset[i])
def test_read_iter():
dataset = load_dataset.IterableDataset(path_file,batch_size=1)
for d in dataset:
print('iter',d)
test_write()
test_random()
test_read_iter()
```
Raw data
{
"_id": null,
"home_page": "https://github.com/ssbuild/fastdatasets",
"name": "fastdatasets",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3, <4",
"maintainer_email": "",
"keywords": "fastdatasets,tfrecords,dataset,datasets",
"author": "ssbuild",
"author_email": "9727464@qq.com",
"download_url": "",
"platform": null,
"description": "\n## The update statement \n\n```text\n2023-10-28 support more torch well known datatasets \n2023-07-08: support some nested case\n2023-07-02: support arrow parquet\n2023-04-28: fix lmdb mutiprocess\n2023-02-13: add TopDataset with iterable_dataset and patch\n2022-12-07: modify a bug for randomdataset for batch reminder\n2022-11-07: add numpy writer and parser,add memory writer and parser\n2022-10-29: add kv dataset \n```\n\n## usage\n [numpy_io](https://github.com/ssbuild/numpy_io) \n\n## Install\n```commandline\npip install -U fastdatasets\n```\n\n\n### 1. Record Write\n\n```python\nimport data_serialize\nfrom fastdatasets.record import load_dataset, gfile,TFRecordOptions, TFRecordCompressionType, TFRecordWriter\n\n# Example Features\u7ed3\u6784\u517c\u5bb9tensorflow.dataset\ndef test_write_featrue():\n options = 'GZIP'\n\n def test_write(filename, N=3, context='aaa'):\n with TFRecordWriter(filename, options=options) as file_writer:\n for _ in range(N):\n val1 = data_serialize.Int64List(value=[1, 2, 3] * 20)\n val2 = data_serialize.FloatList(value=[1, 2, 3] * 20)\n val3 = data_serialize.BytesList(value=[b'The china', b'boy'])\n featrue = data_serialize.Features(feature=\n {\n \"item_0\": data_serialize.Feature(int64_list=val1),\n \"item_1\": data_serialize.Feature(float_list=val2),\n \"item_2\": data_serialize.Feature(bytes_list=val3)\n }\n )\n example = data_serialize.Example(features=featrue)\n file_writer.write(example.SerializeToString())\n\n test_write('d:/example.tfrecords0', 3, 'file0')\n test_write('d:/example.tfrecords1', 10, 'file1')\n test_write('d:/example.tfrecords2', 12, 'file2')\n\n\n# \u5199\u4efb\u610f\u5b57\u7b26\u4e32\ndef test_write_string():\n options = 'GZIP'\n\n def test_write(filename, N=3, context='aaa'):\n with TFRecordWriter(filename, options=options) as file_writer:\n for _ in range(N):\n # x, y = np.random.random(), np.random.random()\n file_writer.write(context + '____' + str(_))\n\n test_write('d:/example.tfrecords0', 3, 'file0')\n test_write('d:/example.tfrecords1', 10, 'file1')\n test_write('d:/example.tfrecords2', 12, 'file2')\n\n\n\n```\n\n### 2. record Simple Writer Demo\n\n```python\n# @Time : 2022/9/18 23:27\nimport pickle\nimport data_serialize\nimport numpy as np\nfrom fastdatasets.record import load_dataset\nfrom fastdatasets.record import RECORD, WriterObject,FeatureWriter,StringWriter,PickleWriter,DataType,NumpyWriter\n\nfilename= r'd:\\\\example_writer.record'\n\ndef test_writer(filename):\n print('test_feature ...')\n options = RECORD.TFRecordOptions(compression_type='GZIP')\n f = NumpyWriter(filename,options=options)\n\n values = []\n n = 30\n for i in range(n):\n train_node = {\n \"index\": np.asarray(i, dtype=np.int64),\n 'image': np.random.rand(3, 4),\n 'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),\n 'bdata': np.asarray(b'11111111asdadasdasdaa')\n }\n\n values.append(train_node)\n if (i + 1) % 10000 == 0:\n f.write_batch( values)\n values.clear()\n if len(values):\n f.write_batch(values)\n f.close()\n\ndef test_iterable(filename):\n options = RECORD.TFRecordOptions(compression_type='GZIP')\n datasets = load_dataset.IterableDataset(filename, options=options).parse_from_numpy_writer()\n for i, d in enumerate(datasets):\n print(i, d)\n\ndef test_random(filename):\n options = RECORD.TFRecordOptions(compression_type='GZIP')\n datasets = load_dataset.RandomDataset(filename, options=options).parse_from_numpy_writer()\n print(len(datasets))\n for i in range(len(datasets)):\n d = datasets[i]\n print(i, d)\n\ntest_writer(filename)\ntest_iterable(filename)\n```\n\n### 3. IterableDataset demo\n\n```python\nimport data_serialize\nfrom fastdatasets.record import load_dataset, gfile, RECORD\n\ndata_path = gfile.glob('d:/example.tfrecords*')\noptions = RECORD.TFRecordOptions(compression_type=None)\nbase_dataset = load_dataset.IterableDataset(data_path, cycle_length=1,\n block_length=1,\n buffer_size=128,\n options=options,\n with_share_memory=True)\n\n\ndef test_batch():\n num = 0\n for _ in base_dataset:\n num += 1\n print('base_dataset num', num)\n\n base_dataset.reset()\n ds = base_dataset.repeat(2).repeat(2).repeat(3).map(lambda x: x + bytes('_aaaaaaaaaaaaaa', encoding='utf-8'))\n num = 0\n for _ in ds:\n num += 1\n\n print('repeat(2).repeat(2).repeat(3) num ', num)\n\n\ndef test_torch():\n def filter_fn(x):\n if x == b'file2____2':\n return True\n return False\n\n base_dataset.reset()\n dataset = base_dataset.filter(filter_fn).interval(2, 0)\n i = 0\n for d in dataset:\n i += 1\n print(i, d)\n\n base_dataset.reset()\n dataset = base_dataset.batch(3)\n i = 0\n for d in dataset:\n i += 1\n print(i, d)\n\n # torch.utils.data.IterableDataset\n from fastdatasets.torch_dataset import IterableDataset\n dataset.reset()\n ds = IterableDataset(dataset=dataset)\n for d in ds:\n print(d)\n\n\ndef test_mutiprocess():\n print('mutiprocess 0...')\n base_dataset.reset()\n dataset = base_dataset.shard(num_shards=3, index=0)\n i = 0\n for d in dataset:\n i += 1\n print(i, d)\n\n print('mutiprocess 1...')\n base_dataset.reset()\n dataset = base_dataset.shard(num_shards=3, index=1)\n i = 0\n for d in dataset:\n i += 1\n print(i, d)\n\n print('mutiprocess 2...')\n base_dataset.reset()\n dataset = base_dataset.shard(num_shards=3, index=2)\n i = 0\n for d in dataset:\n i += 1\n print(i, d)\n\n```\n\n\n\n### 4. RandomDataset demo\n\n```python\nfrom fastdatasets.record import load_dataset, gfile, RECORD\n\ndata_path = gfile.glob('d:/example.tfrecords*')\noptions = RECORD.TFRecordOptions(compression_type=None)\ndataset = load_dataset.RandomDataset(data_path, options=options,\n with_share_memory=True)\n\ndataset = dataset.map(lambda x: x + b\"adasdasdasd\")\nprint(len(dataset))\n\nfor i in range(len(dataset)):\n print(i + 1, dataset[i])\n\nprint('batch...')\ndataset = dataset.batch(7)\nfor i in range(len(dataset)):\n print(i + 1, dataset[i])\n\nprint('unbatch...')\ndataset = dataset.unbatch()\nfor i in range(len(dataset)):\n print(i + 1, dataset[i])\n\nprint('shuffle...')\ndataset = dataset.shuffle(10)\nfor i in range(len(dataset)):\n print(i + 1, dataset[i])\n\nprint('map...')\ndataset = dataset.map(transform_fn=lambda x: x + b'aa22222222222222222222222222222')\nfor i in range(len(dataset)):\n print(i + 1, dataset[i])\n\nprint('torch Dataset...')\nfrom fastdatasets.torch_dataset import Dataset\n\nd = Dataset(dataset)\nfor i in range(len(d)):\n print(i + 1, d[i])\n\n\n```\n\n\n\n### 5. leveldb dataset\n\n```python\n# @Time : 2022/10/27 20:37\n# @Author : tk\nimport numpy as np\nfrom tqdm import tqdm\nfrom fastdatasets.leveldb import DB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter\n\ndb_path = 'd:\\\\example_leveldb_numpy'\n\ndef test_write(db_path):\n options = DB.LeveldbOptions(create_if_missing=True,error_if_exists=False)\n f = NumpyWriter(db_path, options = options)\n keys,values = [],[]\n n = 30\n for i in range(n):\n train_node = {\n \"index\":np.asarray(i,dtype=np.int64),\n 'image': np.random.rand(3,4),\n 'labels': np.random.randint(0,21128,size=(10),dtype=np.int64),\n 'bdata': np.asarray(b'11111111asdadasdasdaa')\n }\n keys.append('input{}'.format(i))\n values.append(train_node)\n if (i+1) % 10000 == 0:\n f.put_batch(keys,values)\n keys.clear()\n values.clear()\n if len(keys):\n f.put_batch(keys, values)\n \n f.get_writer.put('total_num',str(n))\n f.close()\n\n\n\ndef test_random(db_path):\n options = DB.LeveldbOptions(create_if_missing=False, error_if_exists=False)\n dataset = load_dataset.RandomDataset(db_path,\n data_key_prefix_list=('input',),\n num_key='total_num',\n options = options)\n\n dataset = dataset.parse_from_numpy_writer().shuffle(10)\n print(len(dataset))\n for i in tqdm(range(len(dataset)),total=len(dataset)):\n d = dataset[i]\n print(i,d)\n\ntest_write(db_path)\ntest_random(db_path)\n\n```\n\n\n### 6. lmdb dataset\n\n```python\n# @Time : 2022/10/27 20:37\n# @Author : tk\n\nimport numpy as np\nfrom tqdm import tqdm\nfrom fastdatasets.lmdb import DB,LMDB,load_dataset,WriterObject,DataType,StringWriter,JsonWriter,FeatureWriter,NumpyWriter\n\ndb_path = 'd:\\\\example_lmdb_numpy'\n\ndef test_write(db_path):\n options = DB.LmdbOptions(env_open_flag = 0,\n env_open_mode = 0o664, # 8\u8fdb\u5236\u8868\u793a\n txn_flag = 0,\n dbi_flag = 0,\n put_flag = 0)\n\n f = NumpyWriter(db_path, options = options,map_size=1024 * 1024 * 1024)\n\n keys, values = [], []\n n = 30\n for i in range(n):\n train_node = {\n 'image': np.random.rand(3, 4),\n 'labels': np.random.randint(0, 21128, size=(10), dtype=np.int64),\n 'bdata': np.asarray(b'11111111asdadasdasdaa')\n }\n keys.append('input{}'.format(i))\n values.append(train_node)\n if (i + 1) % 10000 == 0:\n f.put_batch(keys, values)\n keys.clear()\n values.clear()\n if len(keys):\n f.put_batch(keys, values)\n\n f.get_writer.put('total_num',str(n))\n f.close()\n\n\n\ndef test_random(db_path):\n options = DB.LmdbOptions(env_open_flag=DB.LmdbFlag.MDB_RDONLY,\n env_open_mode=0o664, # 8\u8fdb\u5236\u8868\u793a\n txn_flag=LMDB.LmdbFlag.MDB_RDONLY,\n dbi_flag=0,\n put_flag=0)\n dataset = load_dataset.RandomDataset(db_path,\n data_key_prefix_list=('input',),\n num_key='total_num',\n options = options)\n\n dataset = dataset.parse_from_numpy_writer().shuffle(10)\n print(len(dataset))\n for i in tqdm(range(len(dataset)), total=len(dataset)):\n d = dataset[i]\n print(d)\n\ntest_write(db_path)\ntest_random(db_path)\n```\n\n\n\n### 7. arrow dataset \n\n\n```python\n\n\nfrom fastdatasets.arrow.writer import PythonWriter\nfrom fastdatasets.arrow.dataset import load_dataset,arrow\n\n\npath_file = 'd:/tmp/data.arrow'\n\n\n\nwith_stream = True\ndef test_write():\n fs = PythonWriter(path_file,\n schema={'id': 'int32',\n 'text': 'str',\n 'map': 'map',\n 'map2': 'map_list'\n },\n with_stream=with_stream,\n options=None)\n for i in range(2):\n data = {\n \"id\": list(range(i * 3,(i+ 1) * 3)),\n 'text': ['asdasdasdas' + str(i) for i in range(3)],\n 'map': [\n {\"a\": \"aa1\" + str(i), \"b\": \"bb1\", \"c\": \"ccccccc\"},\n {\"a\": \"aa2\", \"b\": \"bb2\", \"c\": \"ccccccc\"},\n {\"a\": \"aa3\", \"b\": \"bb3\", \"c\": \"ccccccc\"},\n ],\n 'map2': [\n\n [\n {\"a\": \"11\" + str(i), \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"12\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"13\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n ],\n [\n {\"a\": \"21\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"22\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n ],\n [\n {\"a\": \"31\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"32\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"32\", \"b\": \"bb\", \"c\": \"ccccccc22222222222222\"},\n ]\n ]\n }\n # fs.write_batch(data.keys(),data.values())\n status = fs.write_batch(data.keys(),data.values())\n assert status.ok(),status.message()\n\n\n fs.close()\n\ndef test_random():\n dataset = load_dataset.RandomDataset(path_file,with_share_memory=not with_stream)\n print('total', len(dataset))\n for i in range(len(dataset)):\n print(i,dataset[i])\n\n\n\ndef test_read_iter():\n dataset = load_dataset.IterableDataset(path_file,with_share_memory=not with_stream,batch_size=1)\n for d in dataset:\n print('iter',d)\n\n\ntest_write()\n\ntest_random()\n\ntest_read_iter()\n\n```\n\n### 8. parquet dataset \n\n```python\n\nfrom fastdatasets.parquet.writer import PythonWriter\nfrom fastdatasets.parquet.dataset import load_dataset\nfrom tfrecords.python.io.arrow import ParquetReader,arrow\n\n\npath_file = 'd:/tmp/data.parquet'\n\n\n\ndef test_write():\n fs = PythonWriter(path_file,\n schema={'id': 'int32',\n 'text': 'str',\n 'map': 'map',\n 'map2': 'map_list'\n },\n parquet_options=dict(write_batch_size = 10))\n for i in range(2):\n data = {\n \"id\": list(range(i * 3, (i + 1) * 3)),\n 'text': ['asdasdasdas' + str(i) for i in range(3)],\n 'map': [\n {\"a\": \"aa1\", \"b\": \"bb1\", \"c\": \"ccccccc\"},\n {\"a\": \"aa2\", \"b\": \"bb2\", \"c\": \"ccccccc\"},\n {\"a\": \"aa3\", \"b\": \"bb3\", \"c\": \"ccccccc\"},\n ],\n 'map2': [\n\n [\n {\"a\": \"11\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"12\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"13\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n ],\n [\n {\"a\": \"21\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"22\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n ],\n [\n {\"a\": \"31\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"32\", \"b\": \"bb\", \"c\": \"ccccccc\"},\n {\"a\": \"32\", \"b\": \"bb\", \"c\": \"ccccccc22222222222222\"},\n ]\n ]\n }\n # fs.write_batch(data.keys(),data.values())\n fs.write_table(data.keys(),data.values())\n\n\n fs.close()\n\ndef test_random():\n dataset = load_dataset.RandomDataset(path_file)\n print('total', len(dataset))\n for i in range(len(dataset)):\n print(dataset[i])\n\n\n\ndef test_read_iter():\n dataset = load_dataset.IterableDataset(path_file,batch_size=1)\n for d in dataset:\n print('iter',d)\n\n\ntest_write()\n\ntest_random()\n\ntest_read_iter()\n\n```\n",
"bugtrack_url": null,
"license": "Apache 2.0",
"summary": "fastdatasets: datasets for tfrecords",
"version": "0.9.17",
"project_urls": {
"Homepage": "https://github.com/ssbuild/fastdatasets"
},
"split_keywords": [
"fastdatasets",
"tfrecords",
"dataset",
"datasets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "fb0e51b4fc048e1342e723e62235f1a98cf827a30c972e6db6608195b0e947a7",
"md5": "8546018db1023c45d901404be0820284",
"sha256": "49f9b2334f1bd4c4669c714d5072d0e432710bac653046bdb6cdcfcae7a38e35"
},
"downloads": -1,
"filename": "fastdatasets-0.9.17-py3-none-any.whl",
"has_sig": false,
"md5_digest": "8546018db1023c45d901404be0820284",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3, <4",
"size": 59883,
"upload_time": "2023-10-28T04:01:06",
"upload_time_iso_8601": "2023-10-28T04:01:06.365358Z",
"url": "https://files.pythonhosted.org/packages/fb/0e/51b4fc048e1342e723e62235f1a98cf827a30c972e6db6608195b0e947a7/fastdatasets-0.9.17-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-28 04:01:06",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ssbuild",
"github_project": "fastdatasets",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "fastdatasets"
}