fastdtw


Namefastdtw JSON
Version 0.3.4 PyPI version JSON
download
home_pagehttps://github.com/slaypni/fastdtw
SummaryDynamic Time Warping (DTW) algorithm with an O(N) time and memory complexity.
upload_time2019-10-07 16:02:29
maintainer
docs_urlNone
authorKazuaki Tanida
requires_python
licenseMIT
keywords dtw
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            fastdtw
-------

Python implementation of `FastDTW
<http://cs.fit.edu/~pkc/papers/tdm04.pdf>`_ [1]_, which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal alignments with an O(N) time and memory complexity.

Install
-------

::

  pip install fastdtw

Example
-------

::

  import numpy as np
  from scipy.spatial.distance import euclidean

  from fastdtw import fastdtw

  x = np.array([[1,1], [2,2], [3,3], [4,4], [5,5]])
  y = np.array([[2,2], [3,3], [4,4]])
  distance, path = fastdtw(x, y, dist=euclidean)
  print(distance)

References
----------

.. [1] Stan Salvador, and Philip Chan. "FastDTW: Toward accurate dynamic time warping in linear time and space." Intelligent Data Analysis 11.5 (2007): 561-580.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/slaypni/fastdtw",
    "name": "fastdtw",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "dtw",
    "author": "Kazuaki Tanida",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/99/43/30f2d8db076f216b15c10db663b46e22d1750b1ebacd7af6e62b83d6ab98/fastdtw-0.3.4.tar.gz",
    "platform": "",
    "description": "fastdtw\n-------\n\nPython implementation of `FastDTW\n<http://cs.fit.edu/~pkc/papers/tdm04.pdf>`_ [1]_, which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal alignments with an O(N) time and memory complexity.\n\nInstall\n-------\n\n::\n\n  pip install fastdtw\n\nExample\n-------\n\n::\n\n  import numpy as np\n  from scipy.spatial.distance import euclidean\n\n  from fastdtw import fastdtw\n\n  x = np.array([[1,1], [2,2], [3,3], [4,4], [5,5]])\n  y = np.array([[2,2], [3,3], [4,4]])\n  distance, path = fastdtw(x, y, dist=euclidean)\n  print(distance)\n\nReferences\n----------\n\n.. [1] Stan Salvador, and Philip Chan. \"FastDTW: Toward accurate dynamic time warping in linear time and space.\" Intelligent Data Analysis 11.5 (2007): 561-580.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Dynamic Time Warping (DTW) algorithm with an O(N) time and memory complexity.",
    "version": "0.3.4",
    "split_keywords": [
        "dtw"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "ac819976d43d285e8381a969f2ee4d3b",
                "sha256": "28918c163dce9e736e09252a02073fce712bc4c7aa18f2a45d882cca84da2dbb"
            },
            "downloads": -1,
            "filename": "fastdtw-0.3.4-cp37-cp37m-macosx_10_14_x86_64.whl",
            "has_sig": false,
            "md5_digest": "ac819976d43d285e8381a969f2ee4d3b",
            "packagetype": "bdist_wheel",
            "python_version": "cp37",
            "requires_python": null,
            "size": 103875,
            "upload_time": "2019-10-07T16:02:27",
            "upload_time_iso_8601": "2019-10-07T16:02:27.617042Z",
            "url": "https://files.pythonhosted.org/packages/99/e5/8425c47c3919e3fe3f771ee41c4f97c3a66104d33e07127dea81e32b7987/fastdtw-0.3.4-cp37-cp37m-macosx_10_14_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "03804669ea21e5a91ca06d39dc1908ec",
                "sha256": "2350fa6ec36bcad186eaf81f46eff35181baf04e324f522de8aeb43d0243f64f"
            },
            "downloads": -1,
            "filename": "fastdtw-0.3.4.tar.gz",
            "has_sig": false,
            "md5_digest": "03804669ea21e5a91ca06d39dc1908ec",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 133402,
            "upload_time": "2019-10-07T16:02:29",
            "upload_time_iso_8601": "2019-10-07T16:02:29.982783Z",
            "url": "https://files.pythonhosted.org/packages/99/43/30f2d8db076f216b15c10db663b46e22d1750b1ebacd7af6e62b83d6ab98/fastdtw-0.3.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2019-10-07 16:02:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "slaypni",
    "github_project": "fastdtw",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "fastdtw"
}
        
Elapsed time: 0.07620s