fastdtw
-------
Python implementation of `FastDTW
<http://cs.fit.edu/~pkc/papers/tdm04.pdf>`_ [1]_, which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal alignments with an O(N) time and memory complexity.
Install
-------
::
pip install fastdtw
Example
-------
::
import numpy as np
from scipy.spatial.distance import euclidean
from fastdtw import fastdtw
x = np.array([[1,1], [2,2], [3,3], [4,4], [5,5]])
y = np.array([[2,2], [3,3], [4,4]])
distance, path = fastdtw(x, y, dist=euclidean)
print(distance)
References
----------
.. [1] Stan Salvador, and Philip Chan. "FastDTW: Toward accurate dynamic time warping in linear time and space." Intelligent Data Analysis 11.5 (2007): 561-580.
Raw data
{
"_id": null,
"home_page": "https://github.com/slaypni/fastdtw",
"name": "fastdtw",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "dtw",
"author": "Kazuaki Tanida",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/99/43/30f2d8db076f216b15c10db663b46e22d1750b1ebacd7af6e62b83d6ab98/fastdtw-0.3.4.tar.gz",
"platform": "",
"description": "fastdtw\n-------\n\nPython implementation of `FastDTW\n<http://cs.fit.edu/~pkc/papers/tdm04.pdf>`_ [1]_, which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal alignments with an O(N) time and memory complexity.\n\nInstall\n-------\n\n::\n\n pip install fastdtw\n\nExample\n-------\n\n::\n\n import numpy as np\n from scipy.spatial.distance import euclidean\n\n from fastdtw import fastdtw\n\n x = np.array([[1,1], [2,2], [3,3], [4,4], [5,5]])\n y = np.array([[2,2], [3,3], [4,4]])\n distance, path = fastdtw(x, y, dist=euclidean)\n print(distance)\n\nReferences\n----------\n\n.. [1] Stan Salvador, and Philip Chan. \"FastDTW: Toward accurate dynamic time warping in linear time and space.\" Intelligent Data Analysis 11.5 (2007): 561-580.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Dynamic Time Warping (DTW) algorithm with an O(N) time and memory complexity.",
"version": "0.3.4",
"split_keywords": [
"dtw"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "ac819976d43d285e8381a969f2ee4d3b",
"sha256": "28918c163dce9e736e09252a02073fce712bc4c7aa18f2a45d882cca84da2dbb"
},
"downloads": -1,
"filename": "fastdtw-0.3.4-cp37-cp37m-macosx_10_14_x86_64.whl",
"has_sig": false,
"md5_digest": "ac819976d43d285e8381a969f2ee4d3b",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": null,
"size": 103875,
"upload_time": "2019-10-07T16:02:27",
"upload_time_iso_8601": "2019-10-07T16:02:27.617042Z",
"url": "https://files.pythonhosted.org/packages/99/e5/8425c47c3919e3fe3f771ee41c4f97c3a66104d33e07127dea81e32b7987/fastdtw-0.3.4-cp37-cp37m-macosx_10_14_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "03804669ea21e5a91ca06d39dc1908ec",
"sha256": "2350fa6ec36bcad186eaf81f46eff35181baf04e324f522de8aeb43d0243f64f"
},
"downloads": -1,
"filename": "fastdtw-0.3.4.tar.gz",
"has_sig": false,
"md5_digest": "03804669ea21e5a91ca06d39dc1908ec",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 133402,
"upload_time": "2019-10-07T16:02:29",
"upload_time_iso_8601": "2019-10-07T16:02:29.982783Z",
"url": "https://files.pythonhosted.org/packages/99/43/30f2d8db076f216b15c10db663b46e22d1750b1ebacd7af6e62b83d6ab98/fastdtw-0.3.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2019-10-07 16:02:29",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "slaypni",
"github_project": "fastdtw",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "fastdtw"
}