# FastEmbed VectorStore
[](https://github.com/sauravniraula/fastembed_vectorstore)
A high-performance, Rust-based in-memory vector store with FastEmbed integration for Python applications.
## Overview
FastEmbed VectorStore is a lightweight, fast vector database that leverages the power of Rust and the [FastEmbed library](https://github.com/Anush008/fastembed-rs) to provide efficient text embedding and similarity search capabilities. It's designed for applications that need quick semantic search without the overhead of external database systems.
## Features
- 🚀 **High Performance**: Built in Rust with Python bindings for optimal speed
- 🧠 **Multiple Embedding Models**: Support for 30+ pre-trained embedding models including BGE, Nomic, GTE, and more
- 💾 **In-Memory Storage**: Fast in-memory vector storage with persistence capabilities
- 🔍 **Similarity Search**: Cosine similarity-based search with customizable result limits
- 💾 **Save/Load**: Persist and restore vector stores to/from JSON files
- 🐍 **Python Integration**: Seamless Python API with PyO3 bindings
## Supported Embedding Models
The library supports a wide variety of embedding models:
- **BGE Models**: BGEBaseENV15, BGELargeENV15, BGESmallENV15 (with quantized variants)
- **Nomic Models**: NomicEmbedTextV1, NomicEmbedTextV15 (with quantized variants)
- **GTE Models**: GTEBaseENV15, GTELargeENV15 (with quantized variants)
- **Multilingual Models**: MultilingualE5Small, MultilingualE5Base, MultilingualE5Large
- **Specialized Models**: ClipVitB32, JinaEmbeddingsV2BaseCode, ModernBertEmbedLarge
- **And many more...**
## Installation
### Prerequisites
- Python 3.8 or higher
- Rust toolchain (to build from source)
### Install from PyPI
```bash
pip install fastembed-vectorstore
```
### From Source
1. Clone the repository:
```bash
git clone https://github.com/sauravniraula/fastembed_vectorstore.git
cd fastembed_vectorstore
```
2. Install the package:
```bash
maturin develop
```
## Quick Start
```python
from fastembed_vectorstore import FastembedVectorstore, FastembedEmbeddingModel
# Initialize with a model
model = FastembedEmbeddingModel.BGESmallENV15
vectorstore = FastembedVectorstore(model)
# Add documents
documents = [
"The quick brown fox jumps over the lazy dog",
"A quick brown dog jumps over the lazy fox",
"The lazy fox sleeps while the quick brown dog watches",
"Python is a programming language",
"Rust is a systems programming language"
]
# Embed and store documents
success = vectorstore.embed_documents(documents)
print(f"Documents embedded: {success}")
# Search for similar documents
query = "What is Python?"
results = vectorstore.search(query, n=3)
for doc, similarity in results:
print(f"Document: {doc}")
print(f"Similarity: {similarity:.4f}")
print("---")
# Save the vector store
vectorstore.save("my_vectorstore.json")
# Load the vector store later
loaded_vectorstore = FastembedVectorstore.load(model, "my_vectorstore.json")
```
## API Reference
### FastembedEmbeddingModel
Enum containing all supported embedding models. Choose based on your use case:
- **Small models**: Faster, lower memory usage (e.g., `BGESmallENV15`)
- **Base models**: Balanced performance (e.g., `BGEBaseENV15`)
- **Large models**: Higher quality embeddings (e.g., `BGELargeENV15`)
- **Quantized models**: Reduced memory usage (e.g., `BGESmallENV15Q`)
### FastembedVectorstore
#### Constructor
```python
vectorstore = FastembedVectorstore(model: FastembedEmbeddingModel)
```
#### Methods
##### `embed_documents(documents: List[str]) -> bool`
Embeds a list of documents and stores them in the vector store.
##### `search(query: str, n: int) -> List[Tuple[str, float]]`
Searches for the most similar documents to the query. Returns a list of tuples containing (document, similarity_score).
##### `save(path: str) -> bool`
Saves the vector store to a JSON file.
##### `load(model: FastembedEmbeddingModel, path: str) -> FastembedVectorstore`
Loads a vector store from a JSON file.
## Performance Considerations
- **Memory Usage**: All embeddings are stored in memory, so consider the size of your document collection
- **Model Selection**: Smaller models are faster but may have lower quality embeddings
- **Batch Processing**: The `embed_documents` method processes documents in batches for efficiency
## Use Cases
- **Semantic Search**: Find documents similar to a query
- **Document Clustering**: Group similar documents together
- **Recommendation Systems**: Find similar items or content
- **Question Answering**: Retrieve relevant context for Q&A systems
- **Content Discovery**: Help users find related content
## Contributing
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
## License
This project is licensed under the Apache License 2.0 - see the [LICENSE](https://github.com/sauravniraula/fastembed_vectorstore/blob/main/LICENSE) file for details.
## Author
- **Saurav Niraula** - [sauravniraula](https://github.com/sauravniraula)
- Email: developmentsaurav@gmail.com
## Acknowledgments
- Built with [FastEmbed](https://github.com/Anush008/fastembed-rs) for efficient text embeddings
- Uses [PyO3](https://github.com/PyO3/pyo3) for Python-Rust bindings
- Inspired by the need for fast, lightweight vector storage solutions
Raw data
{
"_id": null,
"home_page": null,
"name": "fastembed-vectorstore",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "fastembed, vectorstore, python, rust",
"author": null,
"author_email": "sauravniraula <developmentsaurav@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/82/a0/59d3a5b09eaa8c1d86cd84ae757dde0dc60e00f62378db1f8b0e2dbf1281/fastembed_vectorstore-0.2.0.tar.gz",
"platform": null,
"description": "# FastEmbed VectorStore\n\n[](https://github.com/sauravniraula/fastembed_vectorstore)\n\nA high-performance, Rust-based in-memory vector store with FastEmbed integration for Python applications.\n\n## Overview\n\nFastEmbed VectorStore is a lightweight, fast vector database that leverages the power of Rust and the [FastEmbed library](https://github.com/Anush008/fastembed-rs) to provide efficient text embedding and similarity search capabilities. It's designed for applications that need quick semantic search without the overhead of external database systems.\n\n## Features\n\n- \ud83d\ude80 **High Performance**: Built in Rust with Python bindings for optimal speed\n- \ud83e\udde0 **Multiple Embedding Models**: Support for 30+ pre-trained embedding models including BGE, Nomic, GTE, and more\n- \ud83d\udcbe **In-Memory Storage**: Fast in-memory vector storage with persistence capabilities\n- \ud83d\udd0d **Similarity Search**: Cosine similarity-based search with customizable result limits\n- \ud83d\udcbe **Save/Load**: Persist and restore vector stores to/from JSON files\n- \ud83d\udc0d **Python Integration**: Seamless Python API with PyO3 bindings\n\n## Supported Embedding Models\n\nThe library supports a wide variety of embedding models:\n\n- **BGE Models**: BGEBaseENV15, BGELargeENV15, BGESmallENV15 (with quantized variants)\n- **Nomic Models**: NomicEmbedTextV1, NomicEmbedTextV15 (with quantized variants)\n- **GTE Models**: GTEBaseENV15, GTELargeENV15 (with quantized variants)\n- **Multilingual Models**: MultilingualE5Small, MultilingualE5Base, MultilingualE5Large\n- **Specialized Models**: ClipVitB32, JinaEmbeddingsV2BaseCode, ModernBertEmbedLarge\n- **And many more...**\n\n## Installation\n\n### Prerequisites\n\n- Python 3.8 or higher\n- Rust toolchain (to build from source)\n\n\n### Install from PyPI\n\n```bash\npip install fastembed-vectorstore\n```\n\n### From Source\n\n1. Clone the repository:\n```bash\ngit clone https://github.com/sauravniraula/fastembed_vectorstore.git\ncd fastembed_vectorstore\n```\n\n2. Install the package:\n```bash\nmaturin develop\n```\n\n## Quick Start\n\n```python\nfrom fastembed_vectorstore import FastembedVectorstore, FastembedEmbeddingModel\n\n# Initialize with a model\nmodel = FastembedEmbeddingModel.BGESmallENV15\nvectorstore = FastembedVectorstore(model)\n\n# Add documents\ndocuments = [\n \"The quick brown fox jumps over the lazy dog\",\n \"A quick brown dog jumps over the lazy fox\",\n \"The lazy fox sleeps while the quick brown dog watches\",\n \"Python is a programming language\",\n \"Rust is a systems programming language\"\n]\n\n# Embed and store documents\nsuccess = vectorstore.embed_documents(documents)\nprint(f\"Documents embedded: {success}\")\n\n# Search for similar documents\nquery = \"What is Python?\"\nresults = vectorstore.search(query, n=3)\n\nfor doc, similarity in results:\n print(f\"Document: {doc}\")\n print(f\"Similarity: {similarity:.4f}\")\n print(\"---\")\n\n# Save the vector store\nvectorstore.save(\"my_vectorstore.json\")\n\n# Load the vector store later\nloaded_vectorstore = FastembedVectorstore.load(model, \"my_vectorstore.json\")\n```\n\n## API Reference\n\n### FastembedEmbeddingModel\n\nEnum containing all supported embedding models. Choose based on your use case:\n\n- **Small models**: Faster, lower memory usage (e.g., `BGESmallENV15`)\n- **Base models**: Balanced performance (e.g., `BGEBaseENV15`)\n- **Large models**: Higher quality embeddings (e.g., `BGELargeENV15`)\n- **Quantized models**: Reduced memory usage (e.g., `BGESmallENV15Q`)\n\n### FastembedVectorstore\n\n#### Constructor\n```python\nvectorstore = FastembedVectorstore(model: FastembedEmbeddingModel)\n```\n\n#### Methods\n\n##### `embed_documents(documents: List[str]) -> bool`\nEmbeds a list of documents and stores them in the vector store.\n\n##### `search(query: str, n: int) -> List[Tuple[str, float]]`\nSearches for the most similar documents to the query. Returns a list of tuples containing (document, similarity_score).\n\n##### `save(path: str) -> bool`\nSaves the vector store to a JSON file.\n\n##### `load(model: FastembedEmbeddingModel, path: str) -> FastembedVectorstore`\nLoads a vector store from a JSON file.\n\n## Performance Considerations\n\n- **Memory Usage**: All embeddings are stored in memory, so consider the size of your document collection\n- **Model Selection**: Smaller models are faster but may have lower quality embeddings\n- **Batch Processing**: The `embed_documents` method processes documents in batches for efficiency\n\n## Use Cases\n\n- **Semantic Search**: Find documents similar to a query\n- **Document Clustering**: Group similar documents together\n- **Recommendation Systems**: Find similar items or content\n- **Question Answering**: Retrieve relevant context for Q&A systems\n- **Content Discovery**: Help users find related content\n\n## Contributing\n\nContributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.\n\n## License\n\nThis project is licensed under the Apache License 2.0 - see the [LICENSE](https://github.com/sauravniraula/fastembed_vectorstore/blob/main/LICENSE) file for details.\n\n## Author\n\n- **Saurav Niraula** - [sauravniraula](https://github.com/sauravniraula)\n- Email: developmentsaurav@gmail.com\n\n## Acknowledgments\n\n- Built with [FastEmbed](https://github.com/Anush008/fastembed-rs) for efficient text embeddings\n- Uses [PyO3](https://github.com/PyO3/pyo3) for Python-Rust bindings\n- Inspired by the need for fast, lightweight vector storage solutions \n",
"bugtrack_url": null,
"license": null,
"summary": "A Rust-based in-memory vector store with fastembed",
"version": "0.2.0",
"project_urls": {
"Issues": "https://github.com/sauravniraula/fastembed_vectorstore/issues",
"Repository": "https://github.com/sauravniraula/fastembed_vectorstore"
},
"split_keywords": [
"fastembed",
" vectorstore",
" python",
" rust"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "7c6069448f06f845613acf127575ec6fb666220ec9ba9cf47ff96f3221209354",
"md5": "90a98292480efe1fadc3fd24da80a257",
"sha256": "39205f8c7c2f75bca42a627907c81e7a596fbce56c5efe9ea463068832c41335"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "90a98292480efe1fadc3fd24da80a257",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 10789018,
"upload_time": "2025-08-16T18:15:08",
"upload_time_iso_8601": "2025-08-16T18:15:08.147637Z",
"url": "https://files.pythonhosted.org/packages/7c/60/69448f06f845613acf127575ec6fb666220ec9ba9cf47ff96f3221209354/fastembed_vectorstore-0.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9a3d75989f3651d39ce3c2b03b376b121a256df6c5c31eb4fe8fad29e19e6bfa",
"md5": "2a3926ac3f314e1c1751f921090d4d8a",
"sha256": "e5f86dce61eb9fe4883294d060ab2f0d612bf1c236796e129082ddaebfa6dce8"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "2a3926ac3f314e1c1751f921090d4d8a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 11755441,
"upload_time": "2025-08-16T18:15:28",
"upload_time_iso_8601": "2025-08-16T18:15:28.923953Z",
"url": "https://files.pythonhosted.org/packages/9a/3d/75989f3651d39ce3c2b03b376b121a256df6c5c31eb4fe8fad29e19e6bfa/fastembed_vectorstore-0.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "61b7a70ca441337c1dfe324a115870305839d3f513a9eb10689df54fb1a617d3",
"md5": "12a1ac34ebb73bad50d50d16c9430dc8",
"sha256": "ca68a0dfc0ab6617fc83b5b4a87dce39fbdce8d9cbfd5361b4279089bc751cc1"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "12a1ac34ebb73bad50d50d16c9430dc8",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 8549596,
"upload_time": "2025-08-16T18:15:59",
"upload_time_iso_8601": "2025-08-16T18:15:59.794557Z",
"url": "https://files.pythonhosted.org/packages/61/b7/a70ca441337c1dfe324a115870305839d3f513a9eb10689df54fb1a617d3/fastembed_vectorstore-0.2.0-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "70c5d402e05e86b75299ccdb8afd5786a043faea2b663fc1aa84242ae6f1cf81",
"md5": "4ae1996f8bb5317a314d2b881063f0e1",
"sha256": "915150aa8b4f7937353031d49d8ec8d19545448db0d9a9f1144be1d48b212e8d"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp311-cp311-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "4ae1996f8bb5317a314d2b881063f0e1",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 9805468,
"upload_time": "2025-08-16T18:15:53",
"upload_time_iso_8601": "2025-08-16T18:15:53.161567Z",
"url": "https://files.pythonhosted.org/packages/70/c5/d402e05e86b75299ccdb8afd5786a043faea2b663fc1aa84242ae6f1cf81/fastembed_vectorstore-0.2.0-cp311-cp311-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "18881fa9f1f82eeca509805ccc42e6826894d4ed7ed6b4e3f5e99c323c16be8a",
"md5": "617b966979e206a147a3d2f79336f282",
"sha256": "9a6758ec6d964be4bd699809daee6351eddc392c4c4f871c27b76d8fc6d0295e"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "617b966979e206a147a3d2f79336f282",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 8627004,
"upload_time": "2025-08-16T18:15:47",
"upload_time_iso_8601": "2025-08-16T18:15:47.115038Z",
"url": "https://files.pythonhosted.org/packages/18/88/1fa9f1f82eeca509805ccc42e6826894d4ed7ed6b4e3f5e99c323c16be8a/fastembed_vectorstore-0.2.0-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "98fd0d2c0dd7ef93c44366c3848c6bce6037443d4bb5471162795fa4010f81af",
"md5": "d7423ef0b3465055f87bacdf1151889e",
"sha256": "6f866c86a6aa34b80e892c3c67545f7f317c957420ad712b8ddd19adfb396e6a"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "d7423ef0b3465055f87bacdf1151889e",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 10788641,
"upload_time": "2025-08-16T18:15:10",
"upload_time_iso_8601": "2025-08-16T18:15:10.399774Z",
"url": "https://files.pythonhosted.org/packages/98/fd/0d2c0dd7ef93c44366c3848c6bce6037443d4bb5471162795fa4010f81af/fastembed_vectorstore-0.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "888fde65206504affe7b7d82d0be0a865d3963521130155d6a24979cad9e6f81",
"md5": "55fb4d34d4b7172768a5878d4d46d5e4",
"sha256": "18497ac3907e9067923bd8a89949db22f2740e9438a32a7269098f9771c99d05"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "55fb4d34d4b7172768a5878d4d46d5e4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 11755796,
"upload_time": "2025-08-16T18:15:31",
"upload_time_iso_8601": "2025-08-16T18:15:31.042072Z",
"url": "https://files.pythonhosted.org/packages/88/8f/de65206504affe7b7d82d0be0a865d3963521130155d6a24979cad9e6f81/fastembed_vectorstore-0.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "073f9aca43e485face0be31f21a39237b5655b7aa8e73274f4520803c887a481",
"md5": "4de81984672178b2d3faa827d8bd5865",
"sha256": "df658505a0685ff96531494d2c7f35275fdab5b297cd4ccb66c67a00a71957d0"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "4de81984672178b2d3faa827d8bd5865",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 8549571,
"upload_time": "2025-08-16T18:16:01",
"upload_time_iso_8601": "2025-08-16T18:16:01.476983Z",
"url": "https://files.pythonhosted.org/packages/07/3f/9aca43e485face0be31f21a39237b5655b7aa8e73274f4520803c887a481/fastembed_vectorstore-0.2.0-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "70086dd38cba987af5679ad9db794f69cc671bd8713d8c55a39d05bdabbe0af6",
"md5": "8d3231a797db574409f4abc2f581810f",
"sha256": "b7f622b787626363506268833a0dc138c54d1c28ef1356547ed70193dc626838"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp312-cp312-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "8d3231a797db574409f4abc2f581810f",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 9802118,
"upload_time": "2025-08-16T18:15:55",
"upload_time_iso_8601": "2025-08-16T18:15:55.266236Z",
"url": "https://files.pythonhosted.org/packages/70/08/6dd38cba987af5679ad9db794f69cc671bd8713d8c55a39d05bdabbe0af6/fastembed_vectorstore-0.2.0-cp312-cp312-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "364c10961c19dd72ec2ef719ae0787f107f9dd641d72e6a251a532727caa7ba9",
"md5": "d5892f3761871c28e3355e8168eed946",
"sha256": "f3c7a5db30d2d83193bd2d392297df15de30e1260769916181b5cb6467e9b3b6"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "d5892f3761871c28e3355e8168eed946",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 8624960,
"upload_time": "2025-08-16T18:15:49",
"upload_time_iso_8601": "2025-08-16T18:15:49.205571Z",
"url": "https://files.pythonhosted.org/packages/36/4c/10961c19dd72ec2ef719ae0787f107f9dd641d72e6a251a532727caa7ba9/fastembed_vectorstore-0.2.0-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "df84129ffc2b99c9487700be4d16d526f11435fac916f097d947687b4cd34bdb",
"md5": "dc5ccfbf02e1bfc50d62dc55c8d8843a",
"sha256": "7e22a1469a79c57c0428a463a2f2c775c44fa0fa82d1def8063026140506eec1"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "dc5ccfbf02e1bfc50d62dc55c8d8843a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 10787158,
"upload_time": "2025-08-16T18:15:12",
"upload_time_iso_8601": "2025-08-16T18:15:12.518860Z",
"url": "https://files.pythonhosted.org/packages/df/84/129ffc2b99c9487700be4d16d526f11435fac916f097d947687b4cd34bdb/fastembed_vectorstore-0.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0c1c0158b85b296ab273b4afecd7f466d88bcec69d2df697041a0a6fa3490d48",
"md5": "5fd52383a35df6fae660d2702e3958c3",
"sha256": "43d9893c97757ca4be77f8a38b007afb68c2d156f49435856551ad8336aededa"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "5fd52383a35df6fae660d2702e3958c3",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 11754917,
"upload_time": "2025-08-16T18:15:33",
"upload_time_iso_8601": "2025-08-16T18:15:33.209537Z",
"url": "https://files.pythonhosted.org/packages/0c/1c/0158b85b296ab273b4afecd7f466d88bcec69d2df697041a0a6fa3490d48/fastembed_vectorstore-0.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9ff6081f30db8485fce6caecc9726315a9855ea030df269088440a8e53eee0ea",
"md5": "8cdf358c31e9be5d2cf6591e7f93721d",
"sha256": "8e1a84befb040775ea7804d22d2e281c6750da48aec623dac95e726ce5ee7609"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "8cdf358c31e9be5d2cf6591e7f93721d",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 8553495,
"upload_time": "2025-08-16T18:16:03",
"upload_time_iso_8601": "2025-08-16T18:16:03.076584Z",
"url": "https://files.pythonhosted.org/packages/9f/f6/081f30db8485fce6caecc9726315a9855ea030df269088440a8e53eee0ea/fastembed_vectorstore-0.2.0-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "70739e6ef33d6810b3dc06c5eab7376177809830fd2666e094132d842831ed83",
"md5": "87e967a6ef2a9bdd1307a2af2ce1766a",
"sha256": "8a7d59f28bd78f05d4d0fb079be13dc30731c6db30d677ee824227749c23376d"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "87e967a6ef2a9bdd1307a2af2ce1766a",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 9801987,
"upload_time": "2025-08-16T18:15:57",
"upload_time_iso_8601": "2025-08-16T18:15:57.339259Z",
"url": "https://files.pythonhosted.org/packages/70/73/9e6ef33d6810b3dc06c5eab7376177809830fd2666e094132d842831ed83/fastembed_vectorstore-0.2.0-cp313-cp313-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4b7bb75444eb08bbfc7461c43d6fd51193c61f71094f972e375bb67fd3aed17a",
"md5": "9151d219258db542ba117bd6c74cc0cc",
"sha256": "e5a1d19a156878ea263b43fab83bc1575ceee9e602472ae09d0a19671a22dc51"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "9151d219258db542ba117bd6c74cc0cc",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 8625079,
"upload_time": "2025-08-16T18:15:51",
"upload_time_iso_8601": "2025-08-16T18:15:51.062500Z",
"url": "https://files.pythonhosted.org/packages/4b/7b/b75444eb08bbfc7461c43d6fd51193c61f71094f972e375bb67fd3aed17a/fastembed_vectorstore-0.2.0-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a8db2ec5db598a8d9153dc736628cb3437864bed7441bdc0401d5c6f96ca08ef",
"md5": "8bcc462d28acf02261b05c4a193b75ec",
"sha256": "16ed8032e6a54018cd0412f8ad0f2b9e6348757d7de11c91392ebf70944430dd"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "8bcc462d28acf02261b05c4a193b75ec",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 10788178,
"upload_time": "2025-08-16T18:15:14",
"upload_time_iso_8601": "2025-08-16T18:15:14.285411Z",
"url": "https://files.pythonhosted.org/packages/a8/db/2ec5db598a8d9153dc736628cb3437864bed7441bdc0401d5c6f96ca08ef/fastembed_vectorstore-0.2.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5812ac7a8e0a716a1fe1a7816ac523e40ada28d4f3c1c5a7cdf651bcda692bf9",
"md5": "7509b470203d0e5545b6e2aaa1059e53",
"sha256": "1cb92526078d4086aaaa6062e1d3a7e70b4951653ad1e98ec38520f4bf6dfa4c"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "7509b470203d0e5545b6e2aaa1059e53",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 11755556,
"upload_time": "2025-08-16T18:15:35",
"upload_time_iso_8601": "2025-08-16T18:15:35.019022Z",
"url": "https://files.pythonhosted.org/packages/58/12/ac7a8e0a716a1fe1a7816ac523e40ada28d4f3c1c5a7cdf651bcda692bf9/fastembed_vectorstore-0.2.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "3ba5012b002b1aa5094404cc95ae016370577e75058ef584169611215cf9e0d2",
"md5": "0b0947817d5c640aacca86f99da05273",
"sha256": "817e158eb2699a5f24ee03d54cd915d5e470a202cd2e1b599c3e562a9061b24c"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "0b0947817d5c640aacca86f99da05273",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 10786561,
"upload_time": "2025-08-16T18:15:16",
"upload_time_iso_8601": "2025-08-16T18:15:16.398435Z",
"url": "https://files.pythonhosted.org/packages/3b/a5/012b002b1aa5094404cc95ae016370577e75058ef584169611215cf9e0d2/fastembed_vectorstore-0.2.0-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d9307034a5b0033708e881d722dcb22b1701fae545788ce5ccec83f21bd4f5be",
"md5": "505ebbef263fd9e01191763a7f01e0ba",
"sha256": "59f35c1d0c4fbf5f2aeb382ffc5492468203245a34ea900cb6da373ad2cfb5f0"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp313-cp313-win_amd64.whl",
"has_sig": false,
"md5_digest": "505ebbef263fd9e01191763a7f01e0ba",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.8",
"size": 8552876,
"upload_time": "2025-08-16T18:16:05",
"upload_time_iso_8601": "2025-08-16T18:16:05.121575Z",
"url": "https://files.pythonhosted.org/packages/d9/30/7034a5b0033708e881d722dcb22b1701fae545788ce5ccec83f21bd4f5be/fastembed_vectorstore-0.2.0-cp313-cp313-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "db343b54e4f90e8185a5ef1901302b6e21eb53ab43c41f75daff5a2d8e20c683",
"md5": "dc99cdb1dc6ec90fb1c9b57e336c396b",
"sha256": "1858e874463edc394ed6d0d8447a3085c9beb96440b96039b06bf5b939847178"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "dc99cdb1dc6ec90fb1c9b57e336c396b",
"packagetype": "bdist_wheel",
"python_version": "cp314",
"requires_python": ">=3.8",
"size": 11753584,
"upload_time": "2025-08-16T18:15:37",
"upload_time_iso_8601": "2025-08-16T18:15:37.133041Z",
"url": "https://files.pythonhosted.org/packages/db/34/3b54e4f90e8185a5ef1901302b6e21eb53ab43c41f75daff5a2d8e20c683/fastembed_vectorstore-0.2.0-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "bcdf94410f22229075bbeff86c544f8c1aa4ae6559e08708768d5fbf65fb8539",
"md5": "1fdd8d55e1a503297e9e608be0de01ae",
"sha256": "335d31e23fc4a592972c4a696bd98b35d29cda4602d25e39c53a1001330b07e9"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "1fdd8d55e1a503297e9e608be0de01ae",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 10788464,
"upload_time": "2025-08-16T18:15:18",
"upload_time_iso_8601": "2025-08-16T18:15:18.509523Z",
"url": "https://files.pythonhosted.org/packages/bc/df/94410f22229075bbeff86c544f8c1aa4ae6559e08708768d5fbf65fb8539/fastembed_vectorstore-0.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0655a32d1e0bc43adb328f12ceb8a45ec8dd63b0dd3dc281abb1eb6a9304db99",
"md5": "8b7c7673261108cc1a6bbad6e2871c61",
"sha256": "b353e3141c4ef6d85b5c0ac6978983d29d135fd87ff5ef9dd50472b52d3ef2b5"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8b7c7673261108cc1a6bbad6e2871c61",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 11756485,
"upload_time": "2025-08-16T18:15:39",
"upload_time_iso_8601": "2025-08-16T18:15:39.117674Z",
"url": "https://files.pythonhosted.org/packages/06/55/a32d1e0bc43adb328f12ceb8a45ec8dd63b0dd3dc281abb1eb6a9304db99/fastembed_vectorstore-0.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c2b4e7a6e687bbcd53a8d78c5d8c2e08dbe1fc67f3ba07b8e2c612b945b6d786",
"md5": "75d6c6f160a7791e7de88e839ee0a286",
"sha256": "5c362017840097c69b2f96506d7e974d347be976dec2a54019878cdbfef39889"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "75d6c6f160a7791e7de88e839ee0a286",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 10789227,
"upload_time": "2025-08-16T18:15:20",
"upload_time_iso_8601": "2025-08-16T18:15:20.725245Z",
"url": "https://files.pythonhosted.org/packages/c2/b4/e7a6e687bbcd53a8d78c5d8c2e08dbe1fc67f3ba07b8e2c612b945b6d786/fastembed_vectorstore-0.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "aeeefdd6e8cbd7f56860d505bf756887b176ea5e0129c4312a145f8933ab28af",
"md5": "1a00e8787d0922419f8784049c27f0d0",
"sha256": "83b407518bf66d989f3dc0839dd2975556253e859392e890b61c55ffd91a8574"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1a00e8787d0922419f8784049c27f0d0",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 11756107,
"upload_time": "2025-08-16T18:15:40",
"upload_time_iso_8601": "2025-08-16T18:15:40.990637Z",
"url": "https://files.pythonhosted.org/packages/ae/ee/fdd6e8cbd7f56860d505bf756887b176ea5e0129c4312a145f8933ab28af/fastembed_vectorstore-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c9debc403bcdbe15a0289340c1961a370c497ef403a26bf0f8fe7dde177c4abe",
"md5": "c6e32e57d092cc8ab3cb021161ca7553",
"sha256": "0ed03c85f287f2913f70480b4c5debabb8b7b96c26a7a00ed14e53e608118246"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "c6e32e57d092cc8ab3cb021161ca7553",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 8549709,
"upload_time": "2025-08-16T18:16:06",
"upload_time_iso_8601": "2025-08-16T18:16:06.770189Z",
"url": "https://files.pythonhosted.org/packages/c9/de/bc403bcdbe15a0289340c1961a370c497ef403a26bf0f8fe7dde177c4abe/fastembed_vectorstore-0.2.0-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "c6ca127ca1d5f568ce197750be25c879ca2f6740c526d834536d849df33a2e9c",
"md5": "47e84cef06d1b7e62ceb927f11f5836d",
"sha256": "d4a7a326835ece344a3fc192772169694d2462c7fa9e5498107957900d3dd281"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "47e84cef06d1b7e62ceb927f11f5836d",
"packagetype": "bdist_wheel",
"python_version": "pp310",
"requires_python": ">=3.8",
"size": 10791325,
"upload_time": "2025-08-16T18:15:22",
"upload_time_iso_8601": "2025-08-16T18:15:22.918443Z",
"url": "https://files.pythonhosted.org/packages/c6/ca/127ca1d5f568ce197750be25c879ca2f6740c526d834536d849df33a2e9c/fastembed_vectorstore-0.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "815ccc2b017351cdcb555b4c6ac756bbfdea01a5e445b7f9f6a1dcc3d4b5d69e",
"md5": "d341671a7d7cf809b256f478cad68c74",
"sha256": "0d9d566b10501203d6a6dd80fb37c8542ccbbf8b4639b8496c089a7619e95759"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d341671a7d7cf809b256f478cad68c74",
"packagetype": "bdist_wheel",
"python_version": "pp310",
"requires_python": ">=3.8",
"size": 11756450,
"upload_time": "2025-08-16T18:15:43",
"upload_time_iso_8601": "2025-08-16T18:15:43.062974Z",
"url": "https://files.pythonhosted.org/packages/81/5c/cc2b017351cdcb555b4c6ac756bbfdea01a5e445b7f9f6a1dcc3d4b5d69e/fastembed_vectorstore-0.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "f184f488b8658ede7ac6d7552ae5086291fbce2c838496d23aa847245cf6bc17",
"md5": "7686ac61f7f3645cbe91a7272f08e751",
"sha256": "89c41e0585c208d85dddacbd862ef85cbc232a0eccdf7003f1901c1023801208"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "7686ac61f7f3645cbe91a7272f08e751",
"packagetype": "bdist_wheel",
"python_version": "pp311",
"requires_python": ">=3.8",
"size": 10791068,
"upload_time": "2025-08-16T18:15:24",
"upload_time_iso_8601": "2025-08-16T18:15:24.740570Z",
"url": "https://files.pythonhosted.org/packages/f1/84/f488b8658ede7ac6d7552ae5086291fbce2c838496d23aa847245cf6bc17/fastembed_vectorstore-0.2.0-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "7fb7906d4ee85ad1bf011ffb570977827fff69ecc759a9cd405afafa906e5de4",
"md5": "28189f137c185960895baa3535411faa",
"sha256": "47e315ae1a0fe6f839af77a738910af5cfaa9224fd72d86e9d55b3c311f38f80"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "28189f137c185960895baa3535411faa",
"packagetype": "bdist_wheel",
"python_version": "pp311",
"requires_python": ">=3.8",
"size": 11756331,
"upload_time": "2025-08-16T18:15:45",
"upload_time_iso_8601": "2025-08-16T18:15:45.372114Z",
"url": "https://files.pythonhosted.org/packages/7f/b7/906d4ee85ad1bf011ffb570977827fff69ecc759a9cd405afafa906e5de4/fastembed_vectorstore-0.2.0-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "a5d2aaf17111f4b17844d577ca6e5ae61fa61bca1ba302761f0b0b5e57f7a879",
"md5": "65ec9460dad07552db1b37d5234b85cd",
"sha256": "151ce526425f954d716963687e96997279345c46ca4a0d27bb01ad0a9d64cda8"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "65ec9460dad07552db1b37d5234b85cd",
"packagetype": "bdist_wheel",
"python_version": "pp39",
"requires_python": ">=3.8",
"size": 10790533,
"upload_time": "2025-08-16T18:15:27",
"upload_time_iso_8601": "2025-08-16T18:15:27.009136Z",
"url": "https://files.pythonhosted.org/packages/a5/d2/aaf17111f4b17844d577ca6e5ae61fa61bca1ba302761f0b0b5e57f7a879/fastembed_vectorstore-0.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "82a059d3a5b09eaa8c1d86cd84ae757dde0dc60e00f62378db1f8b0e2dbf1281",
"md5": "c6699dd69958e14d7fa3b36731d7aff0",
"sha256": "78216719673a68ca3e32ca3f85eab2256ae64eed3228efd730f1ccd5a0825058"
},
"downloads": -1,
"filename": "fastembed_vectorstore-0.2.0.tar.gz",
"has_sig": false,
"md5_digest": "c6699dd69958e14d7fa3b36731d7aff0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 40622,
"upload_time": "2025-08-16T18:15:59",
"upload_time_iso_8601": "2025-08-16T18:15:59.003281Z",
"url": "https://files.pythonhosted.org/packages/82/a0/59d3a5b09eaa8c1d86cd84ae757dde0dc60e00f62378db1f8b0e2dbf1281/fastembed_vectorstore-0.2.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-16 18:15:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sauravniraula",
"github_project": "fastembed_vectorstore",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "fastembed-vectorstore"
}