fastgplearn


Namefastgplearn JSON
Version 0.0.17 PyPI version JSON
download
home_pagehttps://github.com/boliqq07/fastgplearn
SummaryFast fitting formula.
upload_time2023-12-20 14:36:51
maintainerwangchangxin
docs_urlNone
authorwangchangxin
requires_python>=3.6
license
keywords genetic programming" "symbolic learning
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Fastgplearn](./img.jpg)](https://gitee.com/boliqq07/fastgplearn)


[![Python Versions](https://img.shields.io/pypi/pyversions/fastgplearn.svg)](https://pypi.org/project/fastgplearn/)
![pypi Versions](https://badge.fury.io/py/fastgplearn.svg)
[![Documentation Status](https://readthedocs.org/projects/fastgplearn-en/badge/?version=latest)](https://fastgplearn-en.readthedocs.io/en/latest/?badge=latest)

FastGPLearn
------------------------
Welcome to FastGPLearn.

FastGPLearn implements Genetic Programming in Python, with a ``scikit-learn`` inspired and compatible API.
And the FastGPLearn applied the ``torch`` and ``numpy`` backend for fast calculated, make it accessible for ``CUDA`` .

FastGPLearn inspired by
[gplearn](https://gplearn.readthedocs.io/en/stable/intro.html),
[BGP](https://bgp.readthedocs.io/en/latest/index.html),


Document
----------------------
[fastgplearn document (English)](https://fastgplearn-en.readthedocs.io/en/latest)

[fastgplearn document (Chinese)](https://fastgplearn.readthedocs.io/en/latest/) 
writing...


Quick Install
----------------------

```bash
pip install fastgplearn
```

License
----------------------
MIT Licence

Contact
----------------------
Developer: boliqq07: 986798607@qq.com

Support
----------------------
[![Jetbrains](./jetbrains.svg)](https://jb.gg/OpenSource)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/boliqq07/fastgplearn",
    "name": "fastgplearn",
    "maintainer": "wangchangxin",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "genetic programming\",\"symbolic learning",
    "author": "wangchangxin",
    "author_email": "986798607@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/98/2b/4ab4eea78b3a5d105d1b59569c6b1a598068a22404d104b5d766da5c9825/fastgplearn-0.0.17.tar.gz",
    "platform": null,
    "description": "[![Fastgplearn](./img.jpg)](https://gitee.com/boliqq07/fastgplearn)\r\n\r\n\r\n[![Python Versions](https://img.shields.io/pypi/pyversions/fastgplearn.svg)](https://pypi.org/project/fastgplearn/)\r\n![pypi Versions](https://badge.fury.io/py/fastgplearn.svg)\r\n[![Documentation Status](https://readthedocs.org/projects/fastgplearn-en/badge/?version=latest)](https://fastgplearn-en.readthedocs.io/en/latest/?badge=latest)\r\n\r\nFastGPLearn\r\n------------------------\r\nWelcome to FastGPLearn.\r\n\r\nFastGPLearn implements Genetic Programming in Python, with a ``scikit-learn`` inspired and compatible API.\r\nAnd the FastGPLearn applied the ``torch`` and ``numpy`` backend for fast calculated, make it accessible for ``CUDA`` .\r\n\r\nFastGPLearn inspired by\r\n[gplearn](https://gplearn.readthedocs.io/en/stable/intro.html),\r\n[BGP](https://bgp.readthedocs.io/en/latest/index.html),\r\n\r\n\r\nDocument\r\n----------------------\r\n[fastgplearn document (English)](https://fastgplearn-en.readthedocs.io/en/latest)\r\n\r\n[fastgplearn document (Chinese)](https://fastgplearn.readthedocs.io/en/latest/) \r\nwriting...\r\n\r\n\r\nQuick Install\r\n----------------------\r\n\r\n```bash\r\npip install fastgplearn\r\n```\r\n\r\nLicense\r\n----------------------\r\nMIT Licence\r\n\r\nContact\r\n----------------------\r\nDeveloper: boliqq07: 986798607@qq.com\r\n\r\nSupport\r\n----------------------\r\n[![Jetbrains](./jetbrains.svg)](https://jb.gg/OpenSource)\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Fast fitting formula.",
    "version": "0.0.17",
    "project_urls": {
        "Homepage": "https://github.com/boliqq07/fastgplearn"
    },
    "split_keywords": [
        "genetic programming\"",
        "\"symbolic learning"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "982b4ab4eea78b3a5d105d1b59569c6b1a598068a22404d104b5d766da5c9825",
                "md5": "5620d3a306418e60cd68edb535bf77e6",
                "sha256": "578f19984b5f8ce952c827fb22e0b4499baa29dc48e04391425137e0c34017e7"
            },
            "downloads": -1,
            "filename": "fastgplearn-0.0.17.tar.gz",
            "has_sig": false,
            "md5_digest": "5620d3a306418e60cd68edb535bf77e6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 468372,
            "upload_time": "2023-12-20T14:36:51",
            "upload_time_iso_8601": "2023-12-20T14:36:51.677683Z",
            "url": "https://files.pythonhosted.org/packages/98/2b/4ab4eea78b3a5d105d1b59569c6b1a598068a22404d104b5d766da5c9825/fastgplearn-0.0.17.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-12-20 14:36:51",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "boliqq07",
    "github_project": "fastgplearn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "fastgplearn"
}
        
Elapsed time: 0.20569s