# fastLBP
Highly parallel LBP implementation
> **Important pre-release warning**:
> If aborted mid-execution, this software sometimes create a lot of orphan processes that needs to be killed manually.
> Please, note down the name of your python script, search for `Python` in your task manager and look for the processes that correspond to your python script.
## Requirements
FastLBP is tested with Python 3.11 on Windows 10, Debian 11, and Ubuntu 22.04
Python requirements are:
- numpy >= 1.26.0
- Cython (to build the binary modules, will be optional in the future)
- scikit-image >= 0.22.0 (mostly for testing, we plan making this requirement optional in the future)
- pandas >= 2.1.1
- psutil
## Installation
- Activate or create a Python 3.11 environment (e.g. using `conda create -y -n p11 python=3.11 && conda activate p11`)
- Verify you are using the right env
- `python --version` and `pip --version`
- Install a stable version from PyPI
`pip install fastlbp-imbg`
- Or build the latest version from sources
```
git clone git@github.com:imbg-ua/fastLBP.git
cd fastLBP
# git checkout <branchname> # if you need a specific branch
pip install . # this will install the fastlbp_imbg package in the current env
```
- You can use `import fastlbp_imbg as fastlbp` now
## Testing
```
# in repo root
conda activate fastlbp
pip install -e .
python -m unittest
```
## Bug reporting
You can report a bug or suggest an improvement using [our github issues](https://github.com/imbg-ua/fastLBP/issues)
## Implemented modules
### run_fastlbp
Computes multiradial LBP of a single multichannel image in a parallel fashion.
Features:
- Powered by `fastlbp_imbg.lbp`, our implementation of `skimage.feature.local_binary_pattern`
- Concurrency is managed by Python's [`multiprocessing`](https://docs.python.org/3/library/multiprocessing.html) module
- Parallel computation via `multiprocessing.Pool` of size `ncpus`
- Efficient memory usage via `multiprocessing.shared_memory` to make sure processes do not create redundant copies of data
- If `save_intermediate_results=False` then computes everything in RAM, no filesystem usage
TODO:
- Use `max_ram` parameter to estimate optimal number of sub-processes and collect memory stats. Now `max_ram` **is ignored**.
## Planned modules
### run_chunked_skimage
Similar to [1. run_fastlbp](#1-run_fastlbp), but each subprocess should compute LBP for its image chunk, not the whole image.
### run_dask and run_chunked_dask
Similar to [1. run_fastlbp](#1-run_fastlbp), but use [Dask](https://docs.dask.org/en/stable/) and [`dask.array.map_overlap`](https://docs.dask.org/en/stable/generated/dask.array.map_overlap.html#dask.array.map_overlap) for parallelisation instead of `multiprocessing` and manual data wrangling
Raw data
{
"_id": null,
"home_page": null,
"name": "fastlbp",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.11",
"maintainer_email": "Dmytro Horyslavets <nepotlet@gmail.com>",
"keywords": "lbp, texture, features, image processing, parallel",
"author": null,
"author_email": "Dmytro Horyslavets <nepotlet@gmail.com>, Mykhailo Koreshkov <koreshov.m@gmail.com>",
"download_url": null,
"platform": null,
"description": "# fastLBP\nHighly parallel LBP implementation\n\n> **Important pre-release warning**:\n> If aborted mid-execution, this software sometimes create a lot of orphan processes that needs to be killed manually.\n> Please, note down the name of your python script, search for `Python` in your task manager and look for the processes that correspond to your python script.\n\n## Requirements\nFastLBP is tested with Python 3.11 on Windows 10, Debian 11, and Ubuntu 22.04\n\nPython requirements are:\n- numpy >= 1.26.0\n- Cython (to build the binary modules, will be optional in the future)\n- scikit-image >= 0.22.0 (mostly for testing, we plan making this requirement optional in the future)\n- pandas >= 2.1.1\n- psutil\n\n## Installation\n\n- Activate or create a Python 3.11 environment (e.g. using `conda create -y -n p11 python=3.11 && conda activate p11`)\n- Verify you are using the right env\n\t- `python --version` and `pip --version`\n- Install a stable version from PyPI \n\t`pip install fastlbp-imbg`\n- Or build the latest version from sources \n\t```\n\tgit clone git@github.com:imbg-ua/fastLBP.git\n\tcd fastLBP\n\t# git checkout <branchname> # if you need a specific branch\n\tpip install . # this will install the fastlbp_imbg package in the current env\n\t```\n- You can use `import fastlbp_imbg as fastlbp` now\n\n## Testing\n```\n# in repo root\nconda activate fastlbp\npip install -e .\npython -m unittest\n```\n\n## Bug reporting\nYou can report a bug or suggest an improvement using [our github issues](https://github.com/imbg-ua/fastLBP/issues)\n\n## Implemented modules\n### run_fastlbp\nComputes multiradial LBP of a single multichannel image in a parallel fashion.\n\nFeatures:\n- Powered by `fastlbp_imbg.lbp`, our implementation of `skimage.feature.local_binary_pattern`\n- Concurrency is managed by Python's [`multiprocessing`](https://docs.python.org/3/library/multiprocessing.html) module\n- Parallel computation via `multiprocessing.Pool` of size `ncpus`\n- Efficient memory usage via `multiprocessing.shared_memory` to make sure processes do not create redundant copies of data\n- If `save_intermediate_results=False` then computes everything in RAM, no filesystem usage\n\nTODO: \n- Use `max_ram` parameter to estimate optimal number of sub-processes and collect memory stats. Now `max_ram` **is ignored**.\n\n## Planned modules\n### run_chunked_skimage\nSimilar to [1. run_fastlbp](#1-run_fastlbp), but each subprocess should compute LBP for its image chunk, not the whole image.\n\n### run_dask and run_chunked_dask\nSimilar to [1. run_fastlbp](#1-run_fastlbp), but use [Dask](https://docs.dask.org/en/stable/) and [`dask.array.map_overlap`](https://docs.dask.org/en/stable/generated/dask.array.map_overlap.html#dask.array.map_overlap) for parallelisation instead of `multiprocessing` and manual data wrangling\n",
"bugtrack_url": null,
"license": null,
"summary": "Parallel multiradial LBP features",
"version": "0.2.3.dev0",
"project_urls": {
"Bug Tracker": "https://github.com/imbg-ua/fastLBP/issues",
"Homepage": "https://github.com/imbg-ua/fastLBP"
},
"split_keywords": [
"lbp",
" texture",
" features",
" image processing",
" parallel"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "ee74272c1b3c126c69d6c2197231a858e77f181cf173a24744042b304ef9cfa0",
"md5": "9de8807005c0bc5a93d408c5874d8145",
"sha256": "8c47a88f707543519961e83e7ab99d937498712aa28ff8db945c8cc98f276694"
},
"downloads": -1,
"filename": "fastlbp-0.2.3.dev0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"has_sig": false,
"md5_digest": "9de8807005c0bc5a93d408c5874d8145",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.11",
"size": 171270,
"upload_time": "2025-07-23T14:41:04",
"upload_time_iso_8601": "2025-07-23T14:41:04.604975Z",
"url": "https://files.pythonhosted.org/packages/ee/74/272c1b3c126c69d6c2197231a858e77f181cf173a24744042b304ef9cfa0/fastlbp-0.2.3.dev0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-23 14:41:04",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "imbg-ua",
"github_project": "fastLBP",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "fastlbp"
}