fastlbp-imbg


Namefastlbp-imbg JSON
Version 0.2.1 PyPI version JSON
download
home_pageNone
SummaryParallel multiradial LBP features
upload_time2024-12-20 13:36:05
maintainerNone
docs_urlNone
authorNone
requires_python>=3.11
licenseNone
keywords lbp texture features image processing parallel
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # fastLBP
Highly parallel LBP implementation

> **Important pre-release warning**:
> If aborted mid-execution, this software sometimes create a lot of orphan processes that needs to be killed manually.
> Please, note down the name of your python script, search for `Python` in your task manager and look for the processes that correspond to your python script.

## Requirements
FastLBP is tested with Python 3.11 on Windows 10, Debian 11, and Ubuntu 22.04

Python requirements are:
- numpy >= 1.26.0
- Cython (to build the binary modules, will be optional in the future)
- scikit-image >= 0.22.0 (mostly for testing, we plan making this requirement optional in the future)
- pandas >= 2.1.1
- psutil

## Installation

- Activate or create a Python 3.11 environment (e.g. using `conda create -y -n p11 python=3.11 && conda activate p11`)
- Verify you are using the right env
	- `python --version` and `pip --version`
- Install a stable version from PyPI  
	`pip install fastlbp-imbg`
- Or build the latest version from sources  
	```
	git clone git@github.com:imbg-ua/fastLBP.git
	cd fastLBP
	# git checkout <branchname> # if you need a specific branch
	pip install . # this will install the fastlbp_imbg package in the current env
	```
- You can use `import fastlbp_imbg as fastlbp` now

## Testing
```
# in repo root
conda activate fastlbp
pip install -e .
python -m unittest
```

## Bug reporting
You can report a bug or suggest an improvement using [our github issues](https://github.com/imbg-ua/fastLBP/issues)

## Implemented modules
### run_fastlbp
Computes multiradial LBP of a single multichannel image in a parallel fashion.

Features:
- Powered by `fastlbp_imbg.lbp`, our implementation of `skimage.feature.local_binary_pattern`
- Concurrency is managed by Python's [`multiprocessing`](https://docs.python.org/3/library/multiprocessing.html) module
- Parallel computation via `multiprocessing.Pool` of size `ncpus`
- Efficient memory usage via  `multiprocessing.shared_memory` to make sure processes do not create redundant copies of data
- If `save_intermediate_results=False` then computes everything in RAM, no filesystem usage

TODO: 
- Use `max_ram` parameter to estimate optimal number of sub-processes and collect memory stats. Now `max_ram` **is ignored**.

## Planned modules
### run_chunked_skimage
Similar to [1. run_fastlbp](#1-run_fastlbp), but each subprocess should compute LBP for its image chunk, not the whole image.

### run_dask and run_chunked_dask
Similar to [1. run_fastlbp](#1-run_fastlbp), but use [Dask](https://docs.dask.org/en/stable/) and [`dask.array.map_overlap`](https://docs.dask.org/en/stable/generated/dask.array.map_overlap.html#dask.array.map_overlap) for parallelisation instead of `multiprocessing` and manual data wrangling

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fastlbp-imbg",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.11",
    "maintainer_email": null,
    "keywords": "lbp, texture, features, image processing, parallel",
    "author": null,
    "author_email": "Mykhailo Koreshkov <koreshov.m@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/78/2f/dd1ef2485020cf36327ddaece724d7cdb3714ea9ff0e253f99a8f8423c03/fastlbp_imbg-0.2.1.tar.gz",
    "platform": null,
    "description": "# fastLBP\r\nHighly parallel LBP implementation\r\n\r\n> **Important pre-release warning**:\r\n> If aborted mid-execution, this software sometimes create a lot of orphan processes that needs to be killed manually.\r\n> Please, note down the name of your python script, search for `Python` in your task manager and look for the processes that correspond to your python script.\r\n\r\n## Requirements\r\nFastLBP is tested with Python 3.11 on Windows 10, Debian 11, and Ubuntu 22.04\r\n\r\nPython requirements are:\r\n- numpy >= 1.26.0\r\n- Cython (to build the binary modules, will be optional in the future)\r\n- scikit-image >= 0.22.0 (mostly for testing, we plan making this requirement optional in the future)\r\n- pandas >= 2.1.1\r\n- psutil\r\n\r\n## Installation\r\n\r\n- Activate or create a Python 3.11 environment (e.g. using `conda create -y -n p11 python=3.11 && conda activate p11`)\r\n- Verify you are using the right env\r\n\t- `python --version` and `pip --version`\r\n- Install a stable version from PyPI  \r\n\t`pip install fastlbp-imbg`\r\n- Or build the latest version from sources  \r\n\t```\r\n\tgit clone git@github.com:imbg-ua/fastLBP.git\r\n\tcd fastLBP\r\n\t# git checkout <branchname> # if you need a specific branch\r\n\tpip install . # this will install the fastlbp_imbg package in the current env\r\n\t```\r\n- You can use `import fastlbp_imbg as fastlbp` now\r\n\r\n## Testing\r\n```\r\n# in repo root\r\nconda activate fastlbp\r\npip install -e .\r\npython -m unittest\r\n```\r\n\r\n## Bug reporting\r\nYou can report a bug or suggest an improvement using [our github issues](https://github.com/imbg-ua/fastLBP/issues)\r\n\r\n## Implemented modules\r\n### run_fastlbp\r\nComputes multiradial LBP of a single multichannel image in a parallel fashion.\r\n\r\nFeatures:\r\n- Powered by `fastlbp_imbg.lbp`, our implementation of `skimage.feature.local_binary_pattern`\r\n- Concurrency is managed by Python's [`multiprocessing`](https://docs.python.org/3/library/multiprocessing.html) module\r\n- Parallel computation via `multiprocessing.Pool` of size `ncpus`\r\n- Efficient memory usage via  `multiprocessing.shared_memory` to make sure processes do not create redundant copies of data\r\n- If `save_intermediate_results=False` then computes everything in RAM, no filesystem usage\r\n\r\nTODO: \r\n- Use `max_ram` parameter to estimate optimal number of sub-processes and collect memory stats. Now `max_ram` **is ignored**.\r\n\r\n## Planned modules\r\n### run_chunked_skimage\r\nSimilar to [1. run_fastlbp](#1-run_fastlbp), but each subprocess should compute LBP for its image chunk, not the whole image.\r\n\r\n### run_dask and run_chunked_dask\r\nSimilar to [1. run_fastlbp](#1-run_fastlbp), but use [Dask](https://docs.dask.org/en/stable/) and [`dask.array.map_overlap`](https://docs.dask.org/en/stable/generated/dask.array.map_overlap.html#dask.array.map_overlap) for parallelisation instead of `multiprocessing` and manual data wrangling\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Parallel multiradial LBP features",
    "version": "0.2.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/imbg-ua/fastLBP/issues",
        "Homepage": "https://github.com/imbg-ua/fastLBP"
    },
    "split_keywords": [
        "lbp",
        " texture",
        " features",
        " image processing",
        " parallel"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d79ed3e18f895b50709d252f2ce5e255ed9afa49dac3e9199576bc5c68383e1d",
                "md5": "1f8bc058b98576f440db4b3b9d46afbf",
                "sha256": "d67141717398b4ca35cc85efd1dea2f7a7504b63599aea1e48fe5fc2ebf3806d"
            },
            "downloads": -1,
            "filename": "fastlbp_imbg-0.2.1-cp311-cp311-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "1f8bc058b98576f440db4b3b9d46afbf",
            "packagetype": "bdist_wheel",
            "python_version": "cp311",
            "requires_python": ">=3.11",
            "size": 123123,
            "upload_time": "2024-12-20T13:36:03",
            "upload_time_iso_8601": "2024-12-20T13:36:03.145464Z",
            "url": "https://files.pythonhosted.org/packages/d7/9e/d3e18f895b50709d252f2ce5e255ed9afa49dac3e9199576bc5c68383e1d/fastlbp_imbg-0.2.1-cp311-cp311-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "782fdd1ef2485020cf36327ddaece724d7cdb3714ea9ff0e253f99a8f8423c03",
                "md5": "d4cc272cb09067f52d95bef6ee5b756c",
                "sha256": "278ef23fe08c5ba7509d67567071fdb20f6bfc9ecdb143c70a255cd81b38386c"
            },
            "downloads": -1,
            "filename": "fastlbp_imbg-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "d4cc272cb09067f52d95bef6ee5b756c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.11",
            "size": 211115,
            "upload_time": "2024-12-20T13:36:05",
            "upload_time_iso_8601": "2024-12-20T13:36:05.617696Z",
            "url": "https://files.pythonhosted.org/packages/78/2f/dd1ef2485020cf36327ddaece724d7cdb3714ea9ff0e253f99a8f8423c03/fastlbp_imbg-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-20 13:36:05",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "imbg-ua",
    "github_project": "fastLBP",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "fastlbp-imbg"
}
        
Elapsed time: 0.51952s