fastlmm


Namefastlmm JSON
Version 0.6.12 PyPI version JSON
download
home_pageNone
SummaryFast GWAS
upload_time2024-11-03 01:20:46
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseApache 2.0
keywords gwas bioinformatics lmms mlms linear mixed models genomics genetics python
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            FaST-LMM
=================================

FaST-LMM, which stands for Factored Spectrally Transformed Linear Mixed Models, is a program for performing 
genome-wide association studies (GWAS) on datasets of all sizes, up to one millions samples.

This release contains the following features, each illustrated with an IPython notebook.

* Core FaST-LMM ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)

Improvements:

* New features for single_snp (including effect size and multiple phenotype support) and epistasis (including reporting beta and using pre-computed eigenvalue decompositions) ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/fastlmm2021.ipynb))  -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)
* Ludicrous-Speed GWAS ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/SingleSnpScale.ipynb)) -- [Kadie and Heckerman, *bioRxiv* 2018](https://www.biorxiv.org/content/10.1101/154682v2)
* Heritability with Spatial Correction ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/heritability_si.ipynb)), [Heckerman *et al.*, *PNAS* 2016](http://www.pnas.org/content/113/27/7377.abstract)
* Two Kernels ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Widmer *et al.*, *Scientific Reports* 2014](http://www.nature.com/srep/2014/141112/srep06874/full/srep06874.html)
* Set Analysis ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Bioinformatics* 2014](http://bioinformatics.oxfordjournals.org/content/early/2014/09/07/bioinformatics.btu504)
* Epistasis ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Scientific Reports,* 2013](http://www.nature.com/srep/2013/130122/srep01099/full/srep01099.html)
* Prediction ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)

*A C++ version, which is generally less functional, is available. See http://fastlmm.github.io/.*

Quick install:
=================================

`pip install fastlmm`

*If you need support for BGEN files, instead do:*

    pip install fastlmm[bgen]

For best performance, be sure your Python distribution includes a fast version of NumPy. We use Anaconda's [Miniconda](https://docs.conda.io/en/latest/miniconda.html).

Documentation
=================================

* IPython Notebooks:
	* [Core, Epistasis, Set Analysis, Two Kernels](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)
    * [Multiple-Phenotype GWAS and related features](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/fastlmm2021.ipynb)
	* [Heritability with Spatial Correction](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/heritability_si.ipynb)
	* [Ludicrous-Speed GWAS](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/SingleSnpScale.ipynb)
* [Main Documentation](http://fastlmm.github.io/FaST-LMM/)
* [Project Home and Full Annotated Bibliography](https://fastlmm.github.io/)


Code
=================================
* [PyPi](https://pypi.org/project/fastlmm/)
* [GitHub](https://github.com/fastlmm/FaST-LMM)

Contacts
=================================

* Email the developers at fastlmm-dev@python.org.
* [Join](mailto:fastlmm-user-join@python.org?subject=Subscribe) the user discussion and announcement list (or use [web sign up](https://mail.python.org/mailman3/lists/fastlmm-user.python.org)).
* [Open an issue](https://github.com/fastlmm/FaST-LMM/issues) on GitHub.

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fastlmm",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "gwas, bioinformatics, LMMs, MLMs, linear, mixed models, genomics, genetics, python",
    "author": null,
    "author_email": "FaST-LMM Team <fastlmm-dev@python.org>",
    "download_url": "https://files.pythonhosted.org/packages/fd/41/7d86ad142acd52a77885db885c07442966c599097fca9781d467010ea6c7/fastlmm-0.6.12.tar.gz",
    "platform": null,
    "description": "FaST-LMM\r\n=================================\r\n\r\nFaST-LMM, which stands for Factored Spectrally Transformed Linear Mixed Models, is a program for performing \r\ngenome-wide association studies (GWAS) on datasets of all sizes, up to one millions samples.\r\n\r\nThis release contains the following features, each illustrated with an IPython notebook.\r\n\r\n* Core FaST-LMM ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)\r\n\r\nImprovements:\r\n\r\n* New features for single_snp (including effect size and multiple phenotype support) and epistasis (including reporting beta and using pre-computed eigenvalue decompositions) ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/fastlmm2021.ipynb))  -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)\r\n* Ludicrous-Speed GWAS ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/SingleSnpScale.ipynb)) -- [Kadie and Heckerman, *bioRxiv* 2018](https://www.biorxiv.org/content/10.1101/154682v2)\r\n* Heritability with Spatial Correction ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/heritability_si.ipynb)), [Heckerman *et al.*, *PNAS* 2016](http://www.pnas.org/content/113/27/7377.abstract)\r\n* Two Kernels ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Widmer *et al.*, *Scientific Reports* 2014](http://www.nature.com/srep/2014/141112/srep06874/full/srep06874.html)\r\n* Set Analysis ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Bioinformatics* 2014](http://bioinformatics.oxfordjournals.org/content/early/2014/09/07/bioinformatics.btu504)\r\n* Epistasis ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Scientific Reports,* 2013](http://www.nature.com/srep/2013/130122/srep01099/full/srep01099.html)\r\n* Prediction ([notebook](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)) -- [Lippert *et al.*, *Nature Methods* 2011](http://www.nature.com/nmeth/journal/v8/n10/abs/nmeth.1681.html)\r\n\r\n*A C++ version, which is generally less functional, is available. See http://fastlmm.github.io/.*\r\n\r\nQuick install:\r\n=================================\r\n\r\n`pip install fastlmm`\r\n\r\n*If you need support for BGEN files, instead do:*\r\n\r\n    pip install fastlmm[bgen]\r\n\r\nFor best performance, be sure your Python distribution includes a fast version of NumPy. We use Anaconda's [Miniconda](https://docs.conda.io/en/latest/miniconda.html).\r\n\r\nDocumentation\r\n=================================\r\n\r\n* IPython Notebooks:\r\n\t* [Core, Epistasis, Set Analysis, Two Kernels](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/FaST-LMM.ipynb)\r\n    * [Multiple-Phenotype GWAS and related features](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/fastlmm2021.ipynb)\r\n\t* [Heritability with Spatial Correction](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/heritability_si.ipynb)\r\n\t* [Ludicrous-Speed GWAS](https://github.com/fastlmm/FaST-LMM/blob/master/doc/ipynb/SingleSnpScale.ipynb)\r\n* [Main Documentation](http://fastlmm.github.io/FaST-LMM/)\r\n* [Project Home and Full Annotated Bibliography](https://fastlmm.github.io/)\r\n\r\n\r\nCode\r\n=================================\r\n* [PyPi](https://pypi.org/project/fastlmm/)\r\n* [GitHub](https://github.com/fastlmm/FaST-LMM)\r\n\r\nContacts\r\n=================================\r\n\r\n* Email the developers at fastlmm-dev@python.org.\r\n* [Join](mailto:fastlmm-user-join@python.org?subject=Subscribe) the user discussion and announcement list (or use [web sign up](https://mail.python.org/mailman3/lists/fastlmm-user.python.org)).\r\n* [Open an issue](https://github.com/fastlmm/FaST-LMM/issues) on GitHub.\r\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Fast GWAS",
    "version": "0.6.12",
    "project_urls": {
        "bug-tracker": "https://github.com/fastlmm/FaST-LMM/issues",
        "documentation": "http://fastlmm.github.io/FaST-LMM",
        "homepage": "https://fastlmm.github.io/",
        "source-code": "https://github.com/fastlmm/FaST-LMM"
    },
    "split_keywords": [
        "gwas",
        " bioinformatics",
        " lmms",
        " mlms",
        " linear",
        " mixed models",
        " genomics",
        " genetics",
        " python"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd417d86ad142acd52a77885db885c07442966c599097fca9781d467010ea6c7",
                "md5": "189503b6e4483dfbfa484b55286950e3",
                "sha256": "052dc05d2d3777ca4045e926a110ac73b70f64500f8e5d2707161be605330029"
            },
            "downloads": -1,
            "filename": "fastlmm-0.6.12.tar.gz",
            "has_sig": false,
            "md5_digest": "189503b6e4483dfbfa484b55286950e3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 9232318,
            "upload_time": "2024-11-03T01:20:46",
            "upload_time_iso_8601": "2024-11-03T01:20:46.767166Z",
            "url": "https://files.pythonhosted.org/packages/fd/41/7d86ad142acd52a77885db885c07442966c599097fca9781d467010ea6c7/fastlmm-0.6.12.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-03 01:20:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fastlmm",
    "github_project": "FaST-LMM",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fastlmm"
}
        
Elapsed time: 2.90816s