# `fastwonn`
Fast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood (Levina & Bickel, 2004), the TwoNN algorithm (Facco et al., 2017), and everything in between!
---
### References
- [E. Levina, P. Bickel; "Maximum Likelihood Estimation of Intrinsic Dimension", Advances in Neural Information Processing Systems, 2004](https://papers.nips.cc/paper_files/paper/2004/hash/74934548253bcab8490ebd74afed7031-Abstract.html)
- [E. Facco, M. d'Errico, A. Rodriguez, A. Laio; "Estimating the intrinsic dimension of datasets by a minimal neighborhood information", Nature Scientific Reports, 2017](https://www.nature.com/articles/s41598-017-11873-y)
Raw data
{
"_id": null,
"home_page": "https://github.com/emaballarin/fastwonn",
"name": "fastwonn",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "Deep Learning, Differentiable Programming, Intrinsic Dimension, Machine Learning, Manifold Learning, Maximum Likelihood Estimation, PyTorch, TwoNN",
"author": "Emanuele Ballarin",
"author_email": "emanuele@ballarin.cc",
"download_url": "https://files.pythonhosted.org/packages/e4/ed/40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9/fastwonn-0.0.9.tar.gz",
"platform": null,
"description": "# `fastwonn`\n\nFast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood (Levina & Bickel, 2004), the TwoNN algorithm (Facco et al., 2017), and everything in between!\n\n---\n\n### References\n- [E. Levina, P. Bickel; \"Maximum Likelihood Estimation of Intrinsic Dimension\", Advances in Neural Information Processing Systems, 2004](https://papers.nips.cc/paper_files/paper/2004/hash/74934548253bcab8490ebd74afed7031-Abstract.html)\n- [E. Facco, M. d'Errico, A. Rodriguez, A. Laio; \"Estimating the intrinsic dimension of datasets by a minimal neighborhood information\", Nature Scientific Reports, 2017](https://www.nature.com/articles/s41598-017-11873-y)\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Fast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood, the TwoNN algorithm, and everything in between!",
"version": "0.0.9",
"project_urls": {
"Homepage": "https://github.com/emaballarin/fastwonn"
},
"split_keywords": [
"deep learning",
" differentiable programming",
" intrinsic dimension",
" machine learning",
" manifold learning",
" maximum likelihood estimation",
" pytorch",
" twonn"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "75ee8d771846fb1be84fc12d8d3a8ab8a51304e2ee3c15f037675ef79b1f2886",
"md5": "51b3bcb54ff1e958f402b98e6ac7e1ef",
"sha256": "27eb05868663617dd9e5179dac6d4cddbce5a060b736dfd97c344b26b77b0aa0"
},
"downloads": -1,
"filename": "fastwonn-0.0.9-py3-none-any.whl",
"has_sig": false,
"md5_digest": "51b3bcb54ff1e958f402b98e6ac7e1ef",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 7863,
"upload_time": "2024-07-08T01:38:02",
"upload_time_iso_8601": "2024-07-08T01:38:02.601709Z",
"url": "https://files.pythonhosted.org/packages/75/ee/8d771846fb1be84fc12d8d3a8ab8a51304e2ee3c15f037675ef79b1f2886/fastwonn-0.0.9-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e4ed40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9",
"md5": "be4e3b361bc81875151db36e7c01f109",
"sha256": "385d55fdad0e18c31a6c05a011d5c2b1eeeea51475a0ef73c87484ece915bc88"
},
"downloads": -1,
"filename": "fastwonn-0.0.9.tar.gz",
"has_sig": false,
"md5_digest": "be4e3b361bc81875151db36e7c01f109",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 5816,
"upload_time": "2024-07-08T01:38:03",
"upload_time_iso_8601": "2024-07-08T01:38:03.490731Z",
"url": "https://files.pythonhosted.org/packages/e4/ed/40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9/fastwonn-0.0.9.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-08 01:38:03",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "emaballarin",
"github_project": "fastwonn",
"github_not_found": true,
"lcname": "fastwonn"
}