fastwonn


Namefastwonn JSON
Version 0.0.9 PyPI version JSON
download
home_pagehttps://github.com/emaballarin/fastwonn
SummaryFast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood, the TwoNN algorithm, and everything in between!
upload_time2024-07-08 01:38:03
maintainerNone
docs_urlNone
authorEmanuele Ballarin
requires_python>=3.10
licenseMIT
keywords deep learning differentiable programming intrinsic dimension machine learning manifold learning maximum likelihood estimation pytorch twonn
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # `fastwonn`

Fast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood (Levina & Bickel, 2004), the TwoNN algorithm (Facco et al., 2017), and everything in between!

---

### References
- [E. Levina, P. Bickel; "Maximum Likelihood Estimation of Intrinsic Dimension", Advances in Neural Information Processing Systems, 2004](https://papers.nips.cc/paper_files/paper/2004/hash/74934548253bcab8490ebd74afed7031-Abstract.html)
- [E. Facco, M. d'Errico, A. Rodriguez, A. Laio; "Estimating the intrinsic dimension of datasets by a minimal neighborhood information", Nature Scientific Reports, 2017](https://www.nature.com/articles/s41598-017-11873-y)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/emaballarin/fastwonn",
    "name": "fastwonn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "Deep Learning, Differentiable Programming, Intrinsic Dimension, Machine Learning, Manifold Learning, Maximum Likelihood Estimation, PyTorch, TwoNN",
    "author": "Emanuele Ballarin",
    "author_email": "emanuele@ballarin.cc",
    "download_url": "https://files.pythonhosted.org/packages/e4/ed/40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9/fastwonn-0.0.9.tar.gz",
    "platform": null,
    "description": "# `fastwonn`\n\nFast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood (Levina & Bickel, 2004), the TwoNN algorithm (Facco et al., 2017), and everything in between!\n\n---\n\n### References\n- [E. Levina, P. Bickel; \"Maximum Likelihood Estimation of Intrinsic Dimension\", Advances in Neural Information Processing Systems, 2004](https://papers.nips.cc/paper_files/paper/2004/hash/74934548253bcab8490ebd74afed7031-Abstract.html)\n- [E. Facco, M. d'Errico, A. Rodriguez, A. Laio; \"Estimating the intrinsic dimension of datasets by a minimal neighborhood information\", Nature Scientific Reports, 2017](https://www.nature.com/articles/s41598-017-11873-y)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Fast, GPU-friendly, differentiable computation of Intrinsic Dimension via Maximum Likelihood, the TwoNN algorithm, and everything in between!",
    "version": "0.0.9",
    "project_urls": {
        "Homepage": "https://github.com/emaballarin/fastwonn"
    },
    "split_keywords": [
        "deep learning",
        " differentiable programming",
        " intrinsic dimension",
        " machine learning",
        " manifold learning",
        " maximum likelihood estimation",
        " pytorch",
        " twonn"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "75ee8d771846fb1be84fc12d8d3a8ab8a51304e2ee3c15f037675ef79b1f2886",
                "md5": "51b3bcb54ff1e958f402b98e6ac7e1ef",
                "sha256": "27eb05868663617dd9e5179dac6d4cddbce5a060b736dfd97c344b26b77b0aa0"
            },
            "downloads": -1,
            "filename": "fastwonn-0.0.9-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "51b3bcb54ff1e958f402b98e6ac7e1ef",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 7863,
            "upload_time": "2024-07-08T01:38:02",
            "upload_time_iso_8601": "2024-07-08T01:38:02.601709Z",
            "url": "https://files.pythonhosted.org/packages/75/ee/8d771846fb1be84fc12d8d3a8ab8a51304e2ee3c15f037675ef79b1f2886/fastwonn-0.0.9-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "e4ed40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9",
                "md5": "be4e3b361bc81875151db36e7c01f109",
                "sha256": "385d55fdad0e18c31a6c05a011d5c2b1eeeea51475a0ef73c87484ece915bc88"
            },
            "downloads": -1,
            "filename": "fastwonn-0.0.9.tar.gz",
            "has_sig": false,
            "md5_digest": "be4e3b361bc81875151db36e7c01f109",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 5816,
            "upload_time": "2024-07-08T01:38:03",
            "upload_time_iso_8601": "2024-07-08T01:38:03.490731Z",
            "url": "https://files.pythonhosted.org/packages/e4/ed/40183d7b6b9be442b9b9697981367eed4c5902d695a133de4d2d649e54f9/fastwonn-0.0.9.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-08 01:38:03",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "emaballarin",
    "github_project": "fastwonn",
    "github_not_found": true,
    "lcname": "fastwonn"
}
        
Elapsed time: 1.64851s