Name | fbpca JSON |
Version |
1.0
JSON |
| download |
home_page | https://www.facebook.com |
Summary | Fast computations of PCA/SVD/eigendecompositions via randomized methods |
upload_time | 2014-12-09 21:25:39 |
maintainer | None |
docs_url | None |
author | tulloch@fb.com |
requires_python | None |
license | BSD License |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
``fbpca`` - Functions for principal component analysis (PCA)
============================================================
Requirements
------------
- `numpy>=1.9`
- `scipy>=0.14`
Installation
------------
::
pip install fbpca
License
-------
The license is BSD, with an additional grant of patent rights.
Related software
----------------
A closely related Matlab/Octave implementation is available at
http://tygert.com/software.html with benchmarking reported at
http://tygert.com/implement.pdf
Raw data
{
"_id": null,
"home_page": "https://www.facebook.com",
"name": "fbpca",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": null,
"author": "tulloch@fb.com",
"author_email": "tulloch@fb.com",
"download_url": "https://files.pythonhosted.org/packages/a7/a5/2085d0645a4bb4f0b606251b0b7466c61326e4a471d445c1c3761a2d07bc/fbpca-1.0.tar.gz",
"platform": "Any",
"description": "``fbpca`` - Functions for principal component analysis (PCA)\n============================================================\n\nRequirements\n------------\n\n- `numpy>=1.9`\n- `scipy>=0.14`\n\nInstallation\n------------\n\n::\n\n pip install fbpca\n\nLicense\n-------\n\nThe license is BSD, with an additional grant of patent rights.\n\nRelated software\n----------------\n\nA closely related Matlab/Octave implementation is available at\nhttp://tygert.com/software.html with benchmarking reported at\nhttp://tygert.com/implement.pdf",
"bugtrack_url": null,
"license": "BSD License",
"summary": "Fast computations of PCA/SVD/eigendecompositions via randomized methods",
"version": "1.0",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "c9abd9b4168f150c78c525190ea74056",
"sha256": "1a06e770fb618a29f0ab57077dffa36e4501e7b339220bed2e7e712f3934b00e"
},
"downloads": -1,
"filename": "fbpca-1.0.macosx-10.9-x86_64.exe",
"has_sig": false,
"md5_digest": "c9abd9b4168f150c78c525190ea74056",
"packagetype": "bdist_wininst",
"python_version": "any",
"requires_python": null,
"size": 73955,
"upload_time": "2014-12-09T21:25:41",
"upload_time_iso_8601": "2014-12-09T21:25:41.604214Z",
"url": "https://files.pythonhosted.org/packages/81/6e/6db5dd4e41f5ef9ae111bcad7825f6c2312df7f6257ecc618df0e26b50d4/fbpca-1.0.macosx-10.9-x86_64.exe",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "8312632180ca9853201400914a75d5e4",
"sha256": "150677642479663f317fdbb5e06dab3f98721cf7031bb4a84113d7a631c472d1"
},
"downloads": -1,
"filename": "fbpca-1.0.tar.gz",
"has_sig": false,
"md5_digest": "8312632180ca9853201400914a75d5e4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 11758,
"upload_time": "2014-12-09T21:25:39",
"upload_time_iso_8601": "2014-12-09T21:25:39.221044Z",
"url": "https://files.pythonhosted.org/packages/a7/a5/2085d0645a4bb4f0b606251b0b7466c61326e4a471d445c1c3761a2d07bc/fbpca-1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2014-12-09 21:25:39",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "fbpca"
}