featomic


Namefeatomic JSON
Version 0.6.0 PyPI version JSON
download
home_pageNone
SummaryComputing representations for atomistic machine learning
upload_time2024-12-20 16:47:06
maintainerNone
docs_urlNone
authorGuillaume Fraux, Philip Loche, Sergei Kliavinek, Kevin Kazuki Huguenin-Dumittan, Davide Tisi, Alexander Goscinski
requires_python>=3.9
licenseBSD-3-Clause
keywords computational science machine learning molecular modeling atomistic representations
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Featomic
=========

|test| |docs| |cov|

Featomic is a library for the efficient computing of representations for atomistic
machine learning also called "descriptors" or "fingerprints". These representations
can be used for atomistic machine learning (ml) models including ml potentials,
visualization or similarity analysis.

The core of the library is written in Rust and we provide
APIs for C/C++ and Python as well.

.. warning::

    **Featomic is still as the proof of concept stage. You should not use it for
    anything important.**

List of implemented representations
###################################

.. inclusion-marker-representations-start

.. list-table::
   :widths: 25 50 20
   :header-rows: 1

   * - representation
     - description
     - gradients

   * - Spherical expansion
     - Atoms are represented by the expansion of their neighbor's density on
       radial basis and spherical harmonics. This is the core of representations
       in SOAP (Smooth Overlap of Atomic Positions)
     - positions, strain, cell
   * - SOAP radial spectrum
     - Atoms are represented by 2-body correlations of their neighbors' density
     - positions, strain, cell
   * - SOAP power spectrum
     - Atoms are represented by 3-body correlations of their neighbors' density
     - positions, strain, cell
   * - LODE Spherical Expansion
     - Core of representations in LODE (Long distance equivariant)
     - positions
   * - Sorted distances
     - Each atom is represented by a vector of distance to its neighbors within
       the spherical cutoff
     - no
   * - Neighbor List
     - Each pair is represented by the vector between the atoms. This is
       intended to be used as a starting point for more complex representations
     - positions
   * - AtomicComposition
     - Obtaining the stoichiometric information of a system
     - positions, strain, cell

.. inclusion-marker-representations-end

For details, tutorials, and examples, please have a look at our `documentation`_.

.. _`documentation`: https://metatensor.github.io/featomic/index.html

.. |test| image:: https://img.shields.io/github/check-runs/metatensor/featomic/main?logo=github&label=tests
    :alt: Tests status
    :target: https://github.com/metatensor/featomic/actions?query=branch%3Amain

.. |docs| image:: https://img.shields.io/badge/documentation-latest-sucess
    :alt: Documentation
    :target: `documentation`_

.. |cov| image:: https://codecov.io/gh/metatensor/featomic/branch/main/graph/badge.svg
    :alt: Coverage Status
    :target: https://codecov.io/gh/metatensor/featomic

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "featomic",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "computational science, machine learning, molecular modeling, atomistic representations",
    "author": "Guillaume Fraux, Philip Loche, Sergei Kliavinek, Kevin Kazuki Huguenin-Dumittan, Davide Tisi, Alexander Goscinski",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/f7/5f/f326681bc9885ebcadaca400fc5353985e219c7e8037fbf15955f644fc22/featomic-0.6.0.tar.gz",
    "platform": null,
    "description": "Featomic\n=========\n\n|test| |docs| |cov|\n\nFeatomic is a library for the efficient computing of representations for atomistic\nmachine learning also called \"descriptors\" or \"fingerprints\". These representations\ncan be used for atomistic machine learning (ml) models including ml potentials,\nvisualization or similarity analysis.\n\nThe core of the library is written in Rust and we provide\nAPIs for C/C++ and Python as well.\n\n.. warning::\n\n    **Featomic is still as the proof of concept stage. You should not use it for\n    anything important.**\n\nList of implemented representations\n###################################\n\n.. inclusion-marker-representations-start\n\n.. list-table::\n   :widths: 25 50 20\n   :header-rows: 1\n\n   * - representation\n     - description\n     - gradients\n\n   * - Spherical expansion\n     - Atoms are represented by the expansion of their neighbor's density on\n       radial basis and spherical harmonics. This is the core of representations\n       in SOAP (Smooth Overlap of Atomic Positions)\n     - positions, strain, cell\n   * - SOAP radial spectrum\n     - Atoms are represented by 2-body correlations of their neighbors' density\n     - positions, strain, cell\n   * - SOAP power spectrum\n     - Atoms are represented by 3-body correlations of their neighbors' density\n     - positions, strain, cell\n   * - LODE Spherical Expansion\n     - Core of representations in LODE (Long distance equivariant)\n     - positions\n   * - Sorted distances\n     - Each atom is represented by a vector of distance to its neighbors within\n       the spherical cutoff\n     - no\n   * - Neighbor List\n     - Each pair is represented by the vector between the atoms. This is\n       intended to be used as a starting point for more complex representations\n     - positions\n   * - AtomicComposition\n     - Obtaining the stoichiometric information of a system\n     - positions, strain, cell\n\n.. inclusion-marker-representations-end\n\nFor details, tutorials, and examples, please have a look at our `documentation`_.\n\n.. _`documentation`: https://metatensor.github.io/featomic/index.html\n\n.. |test| image:: https://img.shields.io/github/check-runs/metatensor/featomic/main?logo=github&label=tests\n    :alt: Tests status\n    :target: https://github.com/metatensor/featomic/actions?query=branch%3Amain\n\n.. |docs| image:: https://img.shields.io/badge/documentation-latest-sucess\n    :alt: Documentation\n    :target: `documentation`_\n\n.. |cov| image:: https://codecov.io/gh/metatensor/featomic/branch/main/graph/badge.svg\n    :alt: Coverage Status\n    :target: https://codecov.io/gh/metatensor/featomic\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "Computing representations for atomistic machine learning",
    "version": "0.6.0",
    "project_urls": {
        "documentation": "https://metatensor.github.io/featomic/latest/",
        "homepage": "https://metatensor.github.io/featomic/latest/",
        "repository": "https://github.com/metatensor/featomic"
    },
    "split_keywords": [
        "computational science",
        " machine learning",
        " molecular modeling",
        " atomistic representations"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "17ed952866ea6670775f4f4385e470fe57437911c514a41eb3d792f711c0f7ec",
                "md5": "6848319e515b0ea7bf7c3232de9e15b4",
                "sha256": "522a57777780f328d74b393a693ff4692f111f0b3be820b1d76477f28574073e"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0-py3-none-macosx_11_0_arm64.whl",
            "has_sig": false,
            "md5_digest": "6848319e515b0ea7bf7c3232de9e15b4",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 989628,
            "upload_time": "2024-12-20T16:46:53",
            "upload_time_iso_8601": "2024-12-20T16:46:53.147891Z",
            "url": "https://files.pythonhosted.org/packages/17/ed/952866ea6670775f4f4385e470fe57437911c514a41eb3d792f711c0f7ec/featomic-0.6.0-py3-none-macosx_11_0_arm64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "73e5ae2ba4e74896e0a6562d2c453f4ed5e651525ba0ffa70b8201ee339d3685",
                "md5": "188aa6ef4ab0c774f4d056549f2ece09",
                "sha256": "6cf08fd6c18539b4e32245f0903e3fe833577ddd9003ff342ef14ae66174a6b4"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0-py3-none-macosx_11_0_x86_64.whl",
            "has_sig": false,
            "md5_digest": "188aa6ef4ab0c774f4d056549f2ece09",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1081686,
            "upload_time": "2024-12-20T16:46:57",
            "upload_time_iso_8601": "2024-12-20T16:46:57.020148Z",
            "url": "https://files.pythonhosted.org/packages/73/e5/ae2ba4e74896e0a6562d2c453f4ed5e651525ba0ffa70b8201ee339d3685/featomic-0.6.0-py3-none-macosx_11_0_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "19b43f1131ff796ddc1a7cedb5a4ffa9b503bf6cd473bd1924300e90a692ec62",
                "md5": "acde37418a0a610675738822ed26e81f",
                "sha256": "3f866b81fcbe81e2a3717ffa1570a1ade8ad3cb29a1a2cc93384891cdb1fd876"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "has_sig": false,
            "md5_digest": "acde37418a0a610675738822ed26e81f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 935960,
            "upload_time": "2024-12-20T16:46:59",
            "upload_time_iso_8601": "2024-12-20T16:46:59.424184Z",
            "url": "https://files.pythonhosted.org/packages/19/b4/3f1131ff796ddc1a7cedb5a4ffa9b503bf6cd473bd1924300e90a692ec62/featomic-0.6.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "dabd86a692059a59f4f8669836bc4699520ce454fed7aede916076fcf1b1a459",
                "md5": "5462804b5824a5ed19644f2baf1236cb",
                "sha256": "2f182006fcdb07005f2470d4fa96b37aa977331b37ad7e32a60884cd6771b3a9"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "has_sig": false,
            "md5_digest": "5462804b5824a5ed19644f2baf1236cb",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 1022468,
            "upload_time": "2024-12-20T16:47:01",
            "upload_time_iso_8601": "2024-12-20T16:47:01.123503Z",
            "url": "https://files.pythonhosted.org/packages/da/bd/86a692059a59f4f8669836bc4699520ce454fed7aede916076fcf1b1a459/featomic-0.6.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fd965cf61e793cfaef9b77746cec29f6866ed5e202a2368a292ce31d72a6a6b5",
                "md5": "03c169dff9c94e410e75995131b2a998",
                "sha256": "b23b17306e5c57012132863cb609d9a68dda526e27f56d34fe0109ed2d1c6509"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0-py3-none-win_amd64.whl",
            "has_sig": false,
            "md5_digest": "03c169dff9c94e410e75995131b2a998",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 949221,
            "upload_time": "2024-12-20T16:47:04",
            "upload_time_iso_8601": "2024-12-20T16:47:04.073892Z",
            "url": "https://files.pythonhosted.org/packages/fd/96/5cf61e793cfaef9b77746cec29f6866ed5e202a2368a292ce31d72a6a6b5/featomic-0.6.0-py3-none-win_amd64.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f75ff326681bc9885ebcadaca400fc5353985e219c7e8037fbf15955f644fc22",
                "md5": "19e1b71f0363457b2f52572ae13d8e50",
                "sha256": "690a0e3a650ce94555a0e02157efae8d360cbaf9a0a647905dec95d28e83253d"
            },
            "downloads": -1,
            "filename": "featomic-0.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "19e1b71f0363457b2f52572ae13d8e50",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 308001,
            "upload_time": "2024-12-20T16:47:06",
            "upload_time_iso_8601": "2024-12-20T16:47:06.013175Z",
            "url": "https://files.pythonhosted.org/packages/f7/5f/f326681bc9885ebcadaca400fc5353985e219c7e8037fbf15955f644fc22/featomic-0.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-20 16:47:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "metatensor",
    "github_project": "featomic",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "featomic"
}
        
Elapsed time: 0.39333s