featureforest


Namefeatureforest JSON
Version 0.0.7 PyPI version JSON
download
home_pageNone
SummaryA napari plugin for segmentation using vision transformer features
upload_time2025-01-14 15:57:04
maintainerNone
docs_urlNone
authorNone
requires_python>=3.10
licenseBSD-3-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Feature Forest

[![License BSD-3](https://img.shields.io/pypi/l/featureforest.svg?color=green)](https://github.com/juglab/featureforest/blob/main/LICENSE)
[![PyPI](https://img.shields.io/pypi/v/featureforest.svg?color=green)](https://pypi.org/project/featureforest)
[![Python Version](https://img.shields.io/pypi/pyversions/featureforest.svg?color=green)](https://python.org)
[![tests](https://github.com/juglab/featureforest/workflows/tests/badge.svg)](https://github.com/juglab/featureforest/actions)
[![codecov](https://codecov.io/gh/juglab/featureforest/branch/main/graph/badge.svg)](https://codecov.io/gh/juglab/featureforest)
[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/featureforest)](https://napari-hub.org/plugins/featureforest)

**A napari plugin for making image annotation using feature space of vision transformers and random forest classifier.**  
We developed a *napari* plugin to train a *Random Forest* model using extracted features of vision foundation models and just a few scribble labels provided by the user as input. This approach can do the segmentation of desired objects almost as well as manual segmentations but in a much shorter time with less manual effort.

----------------------------------

## Documentation
You can check the documentation [here](https://juglab.github.io/featureforest/) (⚠️ work in progress!).

## Installation
To install this plugin you need to use [conda] or [mamba] to create an environment and install the requirements. Use commands below to create the environment and install the plugin:
```bash
git clone https://github.com/juglab/featureforest
cd ./featureforest
```
```bash
# for GPU
conda env create -f ./env_gpu.yml
```
```bash
# if you don't have a GPU
conda env create -f ./env_cpu.yml
```

For more detailed installation guide, check out [here](https://juglab.github.io/featureforest/install/).


## Cite us

Seifi, Mehdi, Damian Dalle Nogare, Juan Battagliotti, Vera Galinova, Ananya Kediga Rao, AI4Life Horizon Europe Programme Consortium, Johan Decelle, Florian Jug, and Joran Deschamps. "FeatureForest: the power of foundation models, the usability of random forests." bioRxiv (2024): 2024-12. [DOI: 10.1101/2024.12.12.628025](https://www.biorxiv.org/content/10.1101/2024.12.12.628025v1.full)


## License

Distributed under the terms of the [BSD-3] license,
"featureforest" is free and open source software

## Issues

If you encounter any problems, please [file an issue] along with a detailed description.

[napari]: https://github.com/napari/napari
[Cookiecutter]: https://github.com/audreyr/cookiecutter
[@napari]: https://github.com/napari
[MIT]: http://opensource.org/licenses/MIT
[BSD-3]: http://opensource.org/licenses/BSD-3-Clause
[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt
[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt
[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0
[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt
[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin

[napari]: https://github.com/napari/napari
[tox]: https://tox.readthedocs.io/en/latest/
[pip]: https://pypi.org/project/pip/
[PyPI]: https://pypi.org/
[conda]: https://conda.io/projects/conda/en/latest/index.html
[mamba]: https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "featureforest",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Mehdi Seifi <mehdi.seifi@fht.org>, Vera Galinova <vera.galinova@fht.org>",
    "download_url": "https://files.pythonhosted.org/packages/3e/09/eb3fe0b15c5dec922d9e8390fa2b5bc97d871b3ab045663557ee36eaa835/featureforest-0.0.7.tar.gz",
    "platform": null,
    "description": "# Feature Forest\n\n[![License BSD-3](https://img.shields.io/pypi/l/featureforest.svg?color=green)](https://github.com/juglab/featureforest/blob/main/LICENSE)\n[![PyPI](https://img.shields.io/pypi/v/featureforest.svg?color=green)](https://pypi.org/project/featureforest)\n[![Python Version](https://img.shields.io/pypi/pyversions/featureforest.svg?color=green)](https://python.org)\n[![tests](https://github.com/juglab/featureforest/workflows/tests/badge.svg)](https://github.com/juglab/featureforest/actions)\n[![codecov](https://codecov.io/gh/juglab/featureforest/branch/main/graph/badge.svg)](https://codecov.io/gh/juglab/featureforest)\n[![napari hub](https://img.shields.io/endpoint?url=https://api.napari-hub.org/shields/featureforest)](https://napari-hub.org/plugins/featureforest)\n\n**A napari plugin for making image annotation using feature space of vision transformers and random forest classifier.**  \nWe developed a *napari* plugin to train a *Random Forest* model using extracted features of vision foundation models and just a few scribble labels provided by the user as input. This approach can do the segmentation of desired objects almost as well as manual segmentations but in a much shorter time with less manual effort.\n\n----------------------------------\n\n## Documentation\nYou can check the documentation [here](https://juglab.github.io/featureforest/) (\u26a0\ufe0f work in progress!).\n\n## Installation\nTo install this plugin you need to use [conda] or [mamba] to create an environment and install the requirements. Use commands below to create the environment and install the plugin:\n```bash\ngit clone https://github.com/juglab/featureforest\ncd ./featureforest\n```\n```bash\n# for GPU\nconda env create -f ./env_gpu.yml\n```\n```bash\n# if you don't have a GPU\nconda env create -f ./env_cpu.yml\n```\n\nFor more detailed installation guide, check out [here](https://juglab.github.io/featureforest/install/).\n\n\n## Cite us\n\nSeifi, Mehdi, Damian Dalle Nogare, Juan Battagliotti, Vera Galinova, Ananya Kediga Rao, AI4Life Horizon Europe Programme Consortium, Johan Decelle, Florian Jug, and Joran Deschamps. \"FeatureForest: the power of foundation models, the usability of random forests.\" bioRxiv (2024): 2024-12. [DOI: 10.1101/2024.12.12.628025](https://www.biorxiv.org/content/10.1101/2024.12.12.628025v1.full)\n\n\n## License\n\nDistributed under the terms of the [BSD-3] license,\n\"featureforest\" is free and open source software\n\n## Issues\n\nIf you encounter any problems, please [file an issue] along with a detailed description.\n\n[napari]: https://github.com/napari/napari\n[Cookiecutter]: https://github.com/audreyr/cookiecutter\n[@napari]: https://github.com/napari\n[MIT]: http://opensource.org/licenses/MIT\n[BSD-3]: http://opensource.org/licenses/BSD-3-Clause\n[GNU GPL v3.0]: http://www.gnu.org/licenses/gpl-3.0.txt\n[GNU LGPL v3.0]: http://www.gnu.org/licenses/lgpl-3.0.txt\n[Apache Software License 2.0]: http://www.apache.org/licenses/LICENSE-2.0\n[Mozilla Public License 2.0]: https://www.mozilla.org/media/MPL/2.0/index.txt\n[cookiecutter-napari-plugin]: https://github.com/napari/cookiecutter-napari-plugin\n\n[napari]: https://github.com/napari/napari\n[tox]: https://tox.readthedocs.io/en/latest/\n[pip]: https://pypi.org/project/pip/\n[PyPI]: https://pypi.org/\n[conda]: https://conda.io/projects/conda/en/latest/index.html\n[mamba]: https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html\n",
    "bugtrack_url": null,
    "license": "BSD-3-Clause",
    "summary": "A napari plugin for segmentation using vision transformer features",
    "version": "0.0.7",
    "project_urls": {
        "homepage": "https://featureforest.github.io/",
        "repository": "https://github.com/juglab/featureforest"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4d306ec71f987fa91332b1bbe62f050bdf3f0333657a37a96e67b560bb2623fe",
                "md5": "7801e3007a32de116a64ca4f880d9cf9",
                "sha256": "40466e59ce7557769a7bb1fd455e191453bd67a68471ef3a1ba4f6aa647db51e"
            },
            "downloads": -1,
            "filename": "featureforest-0.0.7-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7801e3007a32de116a64ca4f880d9cf9",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 48661,
            "upload_time": "2025-01-14T15:57:02",
            "upload_time_iso_8601": "2025-01-14T15:57:02.434211Z",
            "url": "https://files.pythonhosted.org/packages/4d/30/6ec71f987fa91332b1bbe62f050bdf3f0333657a37a96e67b560bb2623fe/featureforest-0.0.7-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3e09eb3fe0b15c5dec922d9e8390fa2b5bc97d871b3ab045663557ee36eaa835",
                "md5": "4227dad34d3e9143e6883c43f7f8da97",
                "sha256": "c77145eb8dc841d30c8ded51d897ce5f810f5839bc61de885e95b10f5c8ea142"
            },
            "downloads": -1,
            "filename": "featureforest-0.0.7.tar.gz",
            "has_sig": false,
            "md5_digest": "4227dad34d3e9143e6883c43f7f8da97",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 1504808,
            "upload_time": "2025-01-14T15:57:04",
            "upload_time_iso_8601": "2025-01-14T15:57:04.417961Z",
            "url": "https://files.pythonhosted.org/packages/3e/09/eb3fe0b15c5dec922d9e8390fa2b5bc97d871b3ab045663557ee36eaa835/featureforest-0.0.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-14 15:57:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "juglab",
    "github_project": "featureforest",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "featureforest"
}
        
Elapsed time: 0.71644s