<p align="center">
<img width=80% src="https://featuretools-static.s3.amazonaws.com/Featuretools-SQL_Logo_1920_Orange%2BGrey.svg" alt"Featuretools-sql"/>
</p>
<p align="center">
<i>Automated creation of EntitySets from relational data stored in SQL databases</i>
</p>
<p align="center">
</a>
<a href="https://badge.fury.io/py/featuretools-sql" target="_blank">
<img src="https://badge.fury.io/py/featuretools-sql.svg?maxAge=2592000" alt="PyPI Version" />
</a>
<a href='https://featuretools.alteryx.com/en/stable/guides/sql_database_integration.html'>
<img src='https://readthedocs.com/projects/feature-labs-inc-featuretools/badge/?version=stable' alt='Documentation Status' />
</a>
<a href="https://anaconda.org/conda-forge/featuretools_sql" target="_blank">
<img src="https://anaconda.org/conda-forge/featuretools_sql/badges/version.svg" alt="Anaconda Version" />
</a>
<a href="https://stackoverflow.com/questions/tagged/featuretools" target="_blank">
<img src="http://img.shields.io/badge/questions-on_stackoverflow-blue.svg" alt="StackOverflow" />
</a>
<a href="https://pepy.tech/project/featuretools-sql" target="_blank">
<img src="https://pepy.tech/badge/featuretools-sql/month" alt="PyPI Downloads" />
</a>
</p>
<hr>
The `featuretools_sql` library allows you to directly import your relational data into [Featuretools](https://github.com/alteryx/featuretools) to run automated feature engineering.
## Installation
Install with pip:
```shell
python -m pip install "featuretools[sql]"
```
or from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/featuretools_sql):
```
conda install -c conda-forge featuretools
```
## Example
Simply pass in the database connection information:
```python
from featuretools_sql.connector import DBConnector
sql_connector = DBConnector(
system_name = "mysql",
host = "127.0.0.1:3306"
user = "root",
password = "password",
database = "db"
)
entityset = sql_connector.get_entityset()
```
The `entityset` object will have the `relationships` and `DataFrames` already populated, allowing you to call featuretools.DFS and run automated feature generation.
```python
import featuretools as ft
feature_defs, feature_matrix = ft.dfs(
entityset=entityset,
target_entity='target_table_name'
)
```
We currently supports importing data from the following relational database systems:
- `MySQL`
- `PostgreSQL`
- `Snowflake`
## Support
The Featuretools community is happy to provide support to users. Project support can be found in four places depending on the type of question:
1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/featuretools) with the `featuretools` tag.
2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/featuretools_sql/issues).
3. For discussion regarding development, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).
4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com
## Built at Alteryx
`featuretools_sql` is an open source project maintained by [Alteryx](https://www.alteryx.com). To see the other open source projects we’re working on, visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.
<p align="center">
<a href="https://www.alteryx.com/open-source">
<img src="https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png" alt="Alteryx Open Source" width="800"/>
</a>
</p>
Raw data
{
"_id": null,
"home_page": "",
"name": "featuretools-sql",
"maintainer": "Alteryx, Inc.",
"docs_url": null,
"requires_python": "<4,>=3.8",
"maintainer_email": "",
"keywords": "relational data,sql,feature engineering,data science,machine learning",
"author": "Alteryx, Inc.",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/60/76/943c87f0d8ceafaec09db98d9ed8fec0fe4640d73846250cd63abfbf1e26/featuretools_sql-0.0.5.tar.gz",
"platform": null,
"description": "<p align=\"center\">\n<img width=80% src=\"https://featuretools-static.s3.amazonaws.com/Featuretools-SQL_Logo_1920_Orange%2BGrey.svg\" alt\"Featuretools-sql\"/>\n</p>\n<p align=\"center\">\n<i>Automated creation of EntitySets from relational data stored in SQL databases</i>\n</p>\n\n<p align=\"center\">\n </a>\n <a href=\"https://badge.fury.io/py/featuretools-sql\" target=\"_blank\">\n <img src=\"https://badge.fury.io/py/featuretools-sql.svg?maxAge=2592000\" alt=\"PyPI Version\" />\n </a>\n <a href='https://featuretools.alteryx.com/en/stable/guides/sql_database_integration.html'>\n <img src='https://readthedocs.com/projects/feature-labs-inc-featuretools/badge/?version=stable' alt='Documentation Status' />\n </a>\n <a href=\"https://anaconda.org/conda-forge/featuretools_sql\" target=\"_blank\">\n <img src=\"https://anaconda.org/conda-forge/featuretools_sql/badges/version.svg\" alt=\"Anaconda Version\" />\n </a>\n <a href=\"https://stackoverflow.com/questions/tagged/featuretools\" target=\"_blank\">\n <img src=\"http://img.shields.io/badge/questions-on_stackoverflow-blue.svg\" alt=\"StackOverflow\" />\n </a>\n <a href=\"https://pepy.tech/project/featuretools-sql\" target=\"_blank\">\n <img src=\"https://pepy.tech/badge/featuretools-sql/month\" alt=\"PyPI Downloads\" />\n </a>\n</p>\n\n<hr>\n\nThe `featuretools_sql` library allows you to directly import your relational data into [Featuretools](https://github.com/alteryx/featuretools) to run automated feature engineering.\n\n## Installation \n\nInstall with pip:\n\n```shell\npython -m pip install \"featuretools[sql]\"\n```\nor from the Conda-forge channel on [conda](https://anaconda.org/conda-forge/featuretools_sql):\n\n```\nconda install -c conda-forge featuretools\n```\n\n## Example\nSimply pass in the database connection information:\n\n```python\nfrom featuretools_sql.connector import DBConnector\n\nsql_connector = DBConnector(\n system_name = \"mysql\",\n host = \"127.0.0.1:3306\"\n user = \"root\",\n password = \"password\",\n database = \"db\"\n) \nentityset = sql_connector.get_entityset()\n```\n\nThe `entityset` object will have the `relationships` and `DataFrames` already populated, allowing you to call featuretools.DFS and run automated feature generation.\n\n```python\nimport featuretools as ft\n\nfeature_defs, feature_matrix = ft.dfs(\n entityset=entityset,\n target_entity='target_table_name'\n)\n```\n\nWe currently supports importing data from the following relational database systems: \n - `MySQL` \n - `PostgreSQL`\n - `Snowflake`\n\n## Support\nThe Featuretools community is happy to provide support to users. Project support can be found in four places depending on the type of question:\n1. For usage questions, use [Stack Overflow](https://stackoverflow.com/questions/tagged/featuretools) with the `featuretools` tag.\n2. For bugs, issues, or feature requests start a [Github issue](https://github.com/alteryx/featuretools_sql/issues).\n3. For discussion regarding development, use [Slack](https://join.slack.com/t/alteryx-oss/shared_invite/zt-182tyvuxv-NzIn6eiCEf8TBziuKp0bNA).\n4. For everything else, the core developers can be reached by email at open_source_support@alteryx.com\n\n## Built at Alteryx\n\n`featuretools_sql` is an open source project maintained by [Alteryx](https://www.alteryx.com). To see the other open source projects we\u2019re working on, visit [Alteryx Open Source](https://www.alteryx.com/open-source). If building impactful data science pipelines is important to you or your business, please get in touch.\n\n<p align=\"center\">\n <a href=\"https://www.alteryx.com/open-source\">\n <img src=\"https://alteryx-oss-web-images.s3.amazonaws.com/OpenSource_Logo-01.png\" alt=\"Alteryx Open Source\" width=\"800\"/>\n </a>\n</p>\n",
"bugtrack_url": null,
"license": "BSD 3-clause",
"summary": "directly import and convert their relational data into a Featuretools",
"version": "0.0.5",
"split_keywords": [
"relational data",
"sql",
"feature engineering",
"data science",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "932588839326dac3c3678086e61f3e95",
"sha256": "b6f70d182cb83ef7645f3b7b0b5d55b9ca9d5bce28568e21fd6f4b13bcd38ae0"
},
"downloads": -1,
"filename": "featuretools_sql-0.0.5-py3-none-any.whl",
"has_sig": false,
"md5_digest": "932588839326dac3c3678086e61f3e95",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<4,>=3.8",
"size": 13999,
"upload_time": "2022-12-20T19:31:32",
"upload_time_iso_8601": "2022-12-20T19:31:32.587384Z",
"url": "https://files.pythonhosted.org/packages/46/ef/8358e3ce627b622d71aa5131b8cae290cfd9a52db8241dc0e7659361ef36/featuretools_sql-0.0.5-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "e1d2ee2a650b3ade504fd29a992d008d",
"sha256": "354e91dda4c34d852f31c312f57143538f8e5285d230af616fff390926a9d02f"
},
"downloads": -1,
"filename": "featuretools_sql-0.0.5.tar.gz",
"has_sig": false,
"md5_digest": "e1d2ee2a650b3ade504fd29a992d008d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<4,>=3.8",
"size": 10118,
"upload_time": "2022-12-20T19:31:34",
"upload_time_iso_8601": "2022-12-20T19:31:34.184905Z",
"url": "https://files.pythonhosted.org/packages/60/76/943c87f0d8ceafaec09db98d9ed8fec0fe4640d73846250cd63abfbf1e26/featuretools_sql-0.0.5.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-20 19:31:34",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "featuretools-sql"
}