Name | febolt JSON |
Version |
0.1.60
JSON |
| download |
home_page | None |
Summary | A Rust-based Statistics and ML package, callable from Python. |
upload_time | 2025-02-16 15:32:59 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | MIT |
keywords |
rust
python
machine learning
statistics
pyo3
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# FeBOLT-
[](https://github.com/luke-brosnan-cbc/FeBOLT/actions)
[](https://pypi.org/project/febolt/)
## Introduction
As datasets continue to grow in size, economists, social scientists, and data analysts require more efficient tools for statistical modeling and inference. Traditional Python libraries like `statsmodels` provide robust inference capabilities but can be slow and memory-intensive, making them impractical for large datasets. Meanwhile, `scikit-learn` offers efficient machine learning tools but lacks the depth of statistical inference needed for rigorous empirical research.
Enter `Febolt`: a high-performance statistical modeling package built with Rust to provide **fast, memory-efficient**, and **fully-featured inference** capabilities. `FeBOLT` is designed to bridge the gap between performance and analytical depth, making it an ideal choice for researchers working with large-scale data.
## Features
- **Probit, Logit, and OLS Models**: Supports fundamental regression models with additional enhancements.
- **Weighted Regression**: Apply observation weights to models.
- **Clustered and Robust Standard Errors**: More reliable inference with robust and cluster-adjusted SEs.
- **Average Marginal Effects (AMEs)**: Compute AMEs for Logit and Probit models.
- **Rust-Powered Performance**: Significantly faster computations compared to Python-based alternatives.
- **Optimized for 32-bit and 64-bit Floats**: Choose between improved memory efficiency with 32-bit floats or higher precision with 64-bit floats.
## Why FeBOLT?
### **Performance Meets Inference**
Unlike `scikit-learn`, which focuses on machine learning without comprehensive inference support, `FeBOLT` is built specifically for statistical modeling while maintaining **speed and efficiency**. Unlike `statsmodels`, which can be bulky and slow for large datasets, `FeBOLT` leverages **Rust’s performance optimizations** to provide rapid computations without sacrificing analytical power.
### **Memory Efficiency for Large Datasets**
Economists and social scientists often deal with panel datasets and large-scale survey data, where traditional inference models become infeasible due to memory constraints. `FeBOLT` allows the use of **32-bit floats** to **significantly reduce memory usage**, while still offering **64-bit float precision** for cases where accuracy is paramount.
### **Inference Without Compromise**
While `scikit-learn` lacks built-in inference tools like **robust and clustered standard errors**, `FeBOLT` incorporates these essential statistical features to support rigorous empirical research. Whether you need **fast OLS regression** or **efficient Probit/Logit estimation with AMEs**, `FeBOLT` delivers both speed and accuracy in one package.
## Installation
```bash
pip install febolt
```
## Quick Start
```python
import febolt
# Example usage (to be filled in)
```
## Performance
`FeBOLT` outperforms `statsmodels` and `scikit-learn` by leveraging Rust’s speed and memory efficiency. This results in significantly faster execution times, especially for large datasets and models requiring robust standard errors.
## Contributing
Contributions are welcome! Feel free to submit issues and pull requests on [GitHub](https://github.com/luke-brosnan-cbc/FeBOLT).
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
Raw data
{
"_id": null,
"home_page": null,
"name": "febolt",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "rust, python, Machine Learning, Statistics, pyo3",
"author": null,
"author_email": "Luke Brosnan <luke.brosnan.cbc@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/0b/0d/f50810ca5df4a949e5bee3291076e5ba140f1fc0a571e62f46687162e021/febolt-0.1.60.tar.gz",
"platform": null,
"description": "# FeBOLT-\n\n[](https://github.com/luke-brosnan-cbc/FeBOLT/actions)\n[](https://pypi.org/project/febolt/)\n\n## Introduction\n\nAs datasets continue to grow in size, economists, social scientists, and data analysts require more efficient tools for statistical modeling and inference. Traditional Python libraries like `statsmodels` provide robust inference capabilities but can be slow and memory-intensive, making them impractical for large datasets. Meanwhile, `scikit-learn` offers efficient machine learning tools but lacks the depth of statistical inference needed for rigorous empirical research.\n\nEnter `Febolt`: a high-performance statistical modeling package built with Rust to provide **fast, memory-efficient**, and **fully-featured inference** capabilities. `FeBOLT` is designed to bridge the gap between performance and analytical depth, making it an ideal choice for researchers working with large-scale data.\n\n## Features\n\n- **Probit, Logit, and OLS Models**: Supports fundamental regression models with additional enhancements.\n- **Weighted Regression**: Apply observation weights to models.\n- **Clustered and Robust Standard Errors**: More reliable inference with robust and cluster-adjusted SEs.\n- **Average Marginal Effects (AMEs)**: Compute AMEs for Logit and Probit models.\n- **Rust-Powered Performance**: Significantly faster computations compared to Python-based alternatives.\n- **Optimized for 32-bit and 64-bit Floats**: Choose between improved memory efficiency with 32-bit floats or higher precision with 64-bit floats.\n\n## Why FeBOLT?\n\n### **Performance Meets Inference**\nUnlike `scikit-learn`, which focuses on machine learning without comprehensive inference support, `FeBOLT` is built specifically for statistical modeling while maintaining **speed and efficiency**. Unlike `statsmodels`, which can be bulky and slow for large datasets, `FeBOLT` leverages **Rust\u2019s performance optimizations** to provide rapid computations without sacrificing analytical power.\n\n### **Memory Efficiency for Large Datasets**\nEconomists and social scientists often deal with panel datasets and large-scale survey data, where traditional inference models become infeasible due to memory constraints. `FeBOLT` allows the use of **32-bit floats** to **significantly reduce memory usage**, while still offering **64-bit float precision** for cases where accuracy is paramount.\n\n### **Inference Without Compromise**\nWhile `scikit-learn` lacks built-in inference tools like **robust and clustered standard errors**, `FeBOLT` incorporates these essential statistical features to support rigorous empirical research. Whether you need **fast OLS regression** or **efficient Probit/Logit estimation with AMEs**, `FeBOLT` delivers both speed and accuracy in one package.\n\n## Installation\n\n```bash\npip install febolt\n```\n\n## Quick Start\n\n```python\nimport febolt\n\n# Example usage (to be filled in)\n```\n\n## Performance\n\n`FeBOLT` outperforms `statsmodels` and `scikit-learn` by leveraging Rust\u2019s speed and memory efficiency. This results in significantly faster execution times, especially for large datasets and models requiring robust standard errors.\n\n## Contributing\n\nContributions are welcome! Feel free to submit issues and pull requests on [GitHub](https://github.com/luke-brosnan-cbc/FeBOLT).\n\n## License\n\nThis project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.\n\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Rust-based Statistics and ML package, callable from Python.",
"version": "0.1.60",
"project_urls": {
"Source Code": "https://github.com/luke-brosnan-cbc/RuSTATS"
},
"split_keywords": [
"rust",
" python",
" machine learning",
" statistics",
" pyo3"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "9f81d1ea0f8e250756c6eaa31e9e7a6c50907b09be5a4fdea01ce5695a8f8ba2",
"md5": "4d200719f9aa820f6194be8be4e1a703",
"sha256": "319b6e3235dcf6d40ef69be1e14a57b34fc59a7ce6d0aa5ef1344a54597536a0"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp310-cp310-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "4d200719f9aa820f6194be8be4e1a703",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 274421,
"upload_time": "2025-02-16T15:32:45",
"upload_time_iso_8601": "2025-02-16T15:32:45.621289Z",
"url": "https://files.pythonhosted.org/packages/9f/81/d1ea0f8e250756c6eaa31e9e7a6c50907b09be5a4fdea01ce5695a8f8ba2/febolt-0.1.60-cp310-cp310-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "026f00e917a8cd9c53813a063385bfc1acfb0091d08715b65e84b38bdcc3b8b8",
"md5": "dc1206a2f2aa15a783637587c07d956a",
"sha256": "ca23497dcd2da8888793b91d49b3cb4aa942206e59333a2daa136b727b37e27f"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "dc1206a2f2aa15a783637587c07d956a",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 255928,
"upload_time": "2025-02-16T15:32:43",
"upload_time_iso_8601": "2025-02-16T15:32:43.900081Z",
"url": "https://files.pythonhosted.org/packages/02/6f/00e917a8cd9c53813a063385bfc1acfb0091d08715b65e84b38bdcc3b8b8/febolt-0.1.60-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "1b9ec3800215f7d23b90ff0aae5b74e9643cbd073e9b4494b9db96c453d046b4",
"md5": "e6ff425ce29697098fbc86b5970fd1ff",
"sha256": "58be8bab495e7c0a3e2be0a1701268909b80adda2e960c966c03dcadd028cb9b"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "e6ff425ce29697098fbc86b5970fd1ff",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 304761,
"upload_time": "2025-02-16T15:32:32",
"upload_time_iso_8601": "2025-02-16T15:32:32.938596Z",
"url": "https://files.pythonhosted.org/packages/1b/9e/c3800215f7d23b90ff0aae5b74e9643cbd073e9b4494b9db96c453d046b4/febolt-0.1.60-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2737ad458e3546b7c1bc603a98eae6f98a49b63e7db181c64a25a3adc0110c73",
"md5": "ae65b33a2355f83811a3a857df82e55e",
"sha256": "a5f741349af4faf560f4e8b876aa021b213fb06b158489f5720aa046dcbc793d"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "ae65b33a2355f83811a3a857df82e55e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.8",
"size": 1001480,
"upload_time": "2025-02-16T15:33:01",
"upload_time_iso_8601": "2025-02-16T15:33:01.001049Z",
"url": "https://files.pythonhosted.org/packages/27/37/ad458e3546b7c1bc603a98eae6f98a49b63e7db181c64a25a3adc0110c73/febolt-0.1.60-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "25ae9b03f0a66e8a90e38a4364421a4e48d616b6ff24524b33872251c9a70f52",
"md5": "26a86621f3a53c2ca8946264ca7a96e8",
"sha256": "4ca85f7e725195517baf37f14de2d123775e0981e28560ca347ef11cefdceaf3"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp311-cp311-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "26a86621f3a53c2ca8946264ca7a96e8",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 274418,
"upload_time": "2025-02-16T15:32:48",
"upload_time_iso_8601": "2025-02-16T15:32:48.912537Z",
"url": "https://files.pythonhosted.org/packages/25/ae/9b03f0a66e8a90e38a4364421a4e48d616b6ff24524b33872251c9a70f52/febolt-0.1.60-cp311-cp311-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0246f13f96994ea081c1dd998b4ea7fd06e7224607f5a5496647abd83adc61e0",
"md5": "952ad82f7fdfabff062b33f470183026",
"sha256": "7b0777a1acf4f560de0824c81c66cbf88173b8f578f4b56a370909eca119d8f2"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "952ad82f7fdfabff062b33f470183026",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 255927,
"upload_time": "2025-02-16T15:32:46",
"upload_time_iso_8601": "2025-02-16T15:32:46.898829Z",
"url": "https://files.pythonhosted.org/packages/02/46/f13f96994ea081c1dd998b4ea7fd06e7224607f5a5496647abd83adc61e0/febolt-0.1.60-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "44ae1ab1945726a3cdfac75420452bb35ef028b22dfcf9a14a12bb0fa3cebca4",
"md5": "186baa9a6757e8f534d1f4c13bafed97",
"sha256": "a1ff3d52dc5d506ab63bfd3561bf0730d48e9abebd92232652162bf939529fc8"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "186baa9a6757e8f534d1f4c13bafed97",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 304762,
"upload_time": "2025-02-16T15:32:34",
"upload_time_iso_8601": "2025-02-16T15:32:34.927999Z",
"url": "https://files.pythonhosted.org/packages/44/ae/1ab1945726a3cdfac75420452bb35ef028b22dfcf9a14a12bb0fa3cebca4/febolt-0.1.60-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "5257cf1e69322eadc578c63c5909c093d8525431601a9f35b3d3cc31183bee4b",
"md5": "575f3c37613b9a68b3643da923fae727",
"sha256": "2af5e35b982d03b6c25472525b3c625b02b7d35951e6f88a6c53dd80a3c66430"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp311-cp311-win_amd64.whl",
"has_sig": false,
"md5_digest": "575f3c37613b9a68b3643da923fae727",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.8",
"size": 1001484,
"upload_time": "2025-02-16T15:33:03",
"upload_time_iso_8601": "2025-02-16T15:33:03.130693Z",
"url": "https://files.pythonhosted.org/packages/52/57/cf1e69322eadc578c63c5909c093d8525431601a9f35b3d3cc31183bee4b/febolt-0.1.60-cp311-cp311-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "9393306680a8360199158f81a5b0ccbf2454f1376b37c7934d40cad09aa609d0",
"md5": "0210be84696ca85fda8ace1973bd9bce",
"sha256": "dc6ef8cdebd02e627341147f59524ccbdcf9f69e60879651459b7895a7c22532"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp312-cp312-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "0210be84696ca85fda8ace1973bd9bce",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 274425,
"upload_time": "2025-02-16T15:32:52",
"upload_time_iso_8601": "2025-02-16T15:32:52.563148Z",
"url": "https://files.pythonhosted.org/packages/93/93/306680a8360199158f81a5b0ccbf2454f1376b37c7934d40cad09aa609d0/febolt-0.1.60-cp312-cp312-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "14c674f9e349e76c27d539fd652a0ed95e9e15e7031276aafcef96103c3aa336",
"md5": "219559804b6e9fdcd2cbec8114233981",
"sha256": "43510eb8b6c7747a11db7af8dd7fd679dbc61c36d42ff2784cc0cb06e2426615"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "219559804b6e9fdcd2cbec8114233981",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 255880,
"upload_time": "2025-02-16T15:32:50",
"upload_time_iso_8601": "2025-02-16T15:32:50.860593Z",
"url": "https://files.pythonhosted.org/packages/14/c6/74f9e349e76c27d539fd652a0ed95e9e15e7031276aafcef96103c3aa336/febolt-0.1.60-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d09bf8c30744aa187c3e9d10035daeefa03408ed317f66edac9880f467ac19c8",
"md5": "9741829743db30bfe4c0486b452e110a",
"sha256": "abddf0499b974829a420cd9c7fd40a1d443533587aef7fcd81fadf319efba017"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "9741829743db30bfe4c0486b452e110a",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 304688,
"upload_time": "2025-02-16T15:32:36",
"upload_time_iso_8601": "2025-02-16T15:32:36.655702Z",
"url": "https://files.pythonhosted.org/packages/d0/9b/f8c30744aa187c3e9d10035daeefa03408ed317f66edac9880f467ac19c8/febolt-0.1.60-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6c034c66c30ecaa91f6d62a691a93b070dbcd90b49bdd183e244538e217ada7e",
"md5": "769db74e48fac0a33507a01e36a4da59",
"sha256": "19db716ac5a1eb9718a560a3e8ae7b9e195ff807e56a79cad6a251db5f7bf3b9"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp312-cp312-win_amd64.whl",
"has_sig": false,
"md5_digest": "769db74e48fac0a33507a01e36a4da59",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.8",
"size": 1001418,
"upload_time": "2025-02-16T15:33:04",
"upload_time_iso_8601": "2025-02-16T15:33:04.469093Z",
"url": "https://files.pythonhosted.org/packages/6c/03/4c66c30ecaa91f6d62a691a93b070dbcd90b49bdd183e244538e217ada7e/febolt-0.1.60-cp312-cp312-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "6b79131f4eb40235121de2d5bfe78b1e4149c93fc5c4e1d43ae1611619d73700",
"md5": "ad1c58b3a5c5ed6a4473f0dadef23819",
"sha256": "af4e10032038d9ea16877bb7f29728337e788c19655147b1c044ec0a408c0bb4"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp38-cp38-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "ad1c58b3a5c5ed6a4473f0dadef23819",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 274232,
"upload_time": "2025-02-16T15:32:55",
"upload_time_iso_8601": "2025-02-16T15:32:55.709374Z",
"url": "https://files.pythonhosted.org/packages/6b/79/131f4eb40235121de2d5bfe78b1e4149c93fc5c4e1d43ae1611619d73700/febolt-0.1.60-cp38-cp38-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0b47f08d414278fde193396498720e7355a4b9fb8680e99f8b33abce9699baaf",
"md5": "4186e401408821768b001d733df27ccd",
"sha256": "57acdb50a9170de7faccf1a59853bb5914e5c9fa5c586fe2987484f0d0438cdd"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "4186e401408821768b001d733df27ccd",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 255767,
"upload_time": "2025-02-16T15:32:54",
"upload_time_iso_8601": "2025-02-16T15:32:54.064423Z",
"url": "https://files.pythonhosted.org/packages/0b/47/f08d414278fde193396498720e7355a4b9fb8680e99f8b33abce9699baaf/febolt-0.1.60-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "645cce98c9097f9e98b34037e6d4d8b91a8f30850028ca3ea2917a32799cbebb",
"md5": "0eef3e0be018b4802e6669ba6f96bea5",
"sha256": "8c251cff9f65016675bd6f69074691cb479f563b25003382b27d39a4f6eca554"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "0eef3e0be018b4802e6669ba6f96bea5",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 304537,
"upload_time": "2025-02-16T15:32:38",
"upload_time_iso_8601": "2025-02-16T15:32:38.762113Z",
"url": "https://files.pythonhosted.org/packages/64/5c/ce98c9097f9e98b34037e6d4d8b91a8f30850028ca3ea2917a32799cbebb/febolt-0.1.60-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "20a6bf3161466328c17b7ce7c652c672654055be1e5b3e9945f1d31c2e9eb032",
"md5": "de946ebe010b51bdb21151a7d8588ea2",
"sha256": "b97acb0ceb31a084879f81d2d13eaf3fbc8d449931e29ed6240895669a8cc7d6"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp38-cp38-win_amd64.whl",
"has_sig": false,
"md5_digest": "de946ebe010b51bdb21151a7d8588ea2",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.8",
"size": 1001373,
"upload_time": "2025-02-16T15:33:07",
"upload_time_iso_8601": "2025-02-16T15:33:07.225909Z",
"url": "https://files.pythonhosted.org/packages/20/a6/bf3161466328c17b7ce7c652c672654055be1e5b3e9945f1d31c2e9eb032/febolt-0.1.60-cp38-cp38-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "4a89b81cd0b68da8971b162b7329ae90c8a4f935d8c14162bcb30950de71e910",
"md5": "327bf9baa01199de5a4fe51d5ab28ca1",
"sha256": "91c3dc6ec12e81bb87cafa260b5e7c19c5aa8178d7245c060251de45db25cad7"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp39-cp39-macosx_10_12_x86_64.whl",
"has_sig": false,
"md5_digest": "327bf9baa01199de5a4fe51d5ab28ca1",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 274331,
"upload_time": "2025-02-16T15:32:58",
"upload_time_iso_8601": "2025-02-16T15:32:58.093396Z",
"url": "https://files.pythonhosted.org/packages/4a/89/b81cd0b68da8971b162b7329ae90c8a4f935d8c14162bcb30950de71e910/febolt-0.1.60-cp39-cp39-macosx_10_12_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d375e665e2c8b077e65f7655603474a7c98f64034969472d25404dfbe37a6d88",
"md5": "c1d23e0aa3237de709295025e84a0ecb",
"sha256": "fcbdcff60ecbaea5dc67a06853653bda3785aab3869b2c16b29f7719425dea2d"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "c1d23e0aa3237de709295025e84a0ecb",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 255837,
"upload_time": "2025-02-16T15:32:56",
"upload_time_iso_8601": "2025-02-16T15:32:56.873686Z",
"url": "https://files.pythonhosted.org/packages/d3/75/e665e2c8b077e65f7655603474a7c98f64034969472d25404dfbe37a6d88/febolt-0.1.60-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "2a113eebd0f87510eb07096950154ecfcc3a640fc1266e8666dc40940c76837b",
"md5": "dc93283ef0714709640d29d34d4be320",
"sha256": "f9108795b26b79e145cfce6585818ec0952b622c4158434dd919d652e7730693"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "dc93283ef0714709640d29d34d4be320",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 304524,
"upload_time": "2025-02-16T15:32:41",
"upload_time_iso_8601": "2025-02-16T15:32:41.850870Z",
"url": "https://files.pythonhosted.org/packages/2a/11/3eebd0f87510eb07096950154ecfcc3a640fc1266e8666dc40940c76837b/febolt-0.1.60-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "38a246f113001c35b8653fab905857710f9f611a415ee7d014b9f8146a1d691c",
"md5": "002c19bc9887b34267a98a644cca15f9",
"sha256": "b86ce0458946b3c2af94346cc6c041873044b6f95ac44c446450a3e4b9bef282"
},
"downloads": -1,
"filename": "febolt-0.1.60-cp39-cp39-win_amd64.whl",
"has_sig": false,
"md5_digest": "002c19bc9887b34267a98a644cca15f9",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.8",
"size": 1001519,
"upload_time": "2025-02-16T15:33:08",
"upload_time_iso_8601": "2025-02-16T15:33:08.574716Z",
"url": "https://files.pythonhosted.org/packages/38/a2/46f113001c35b8653fab905857710f9f611a415ee7d014b9f8146a1d691c/febolt-0.1.60-cp39-cp39-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0b0df50810ca5df4a949e5bee3291076e5ba140f1fc0a571e62f46687162e021",
"md5": "860ff1864198cf7beafe68e720fadca0",
"sha256": "c5d84bf2c3058965885b22af89f95723a30e66af55038230f0411e84e1b74101"
},
"downloads": -1,
"filename": "febolt-0.1.60.tar.gz",
"has_sig": false,
"md5_digest": "860ff1864198cf7beafe68e720fadca0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 25743,
"upload_time": "2025-02-16T15:32:59",
"upload_time_iso_8601": "2025-02-16T15:32:59.299256Z",
"url": "https://files.pythonhosted.org/packages/0b/0d/f50810ca5df4a949e5bee3291076e5ba140f1fc0a571e62f46687162e021/febolt-0.1.60.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-02-16 15:32:59",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "luke-brosnan-cbc",
"github_project": "RuSTATS",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "febolt"
}