This code is intended to work closely with Ocean protocol. Algorithms from this code
should run on ocean provider. Training local models and aggregating them into global
model.
Entry commands:
```bash
felt-train
felt-aggregate
felt-export
```
## Common Usage
After installing this library you can load models trained using FELT as:
```python
from feltlabs.model import load_model
# Load scikit-learn model
model = load_model("final-model.json")
# Data shape must be: (number_of_samples, number_of_features)
data = [
[1980, 2, 2, 2, 0, 0],
[1700, 3, 2, 3, 1, 1],
[2100, 3, 2, 3, 1, 0],
]
result = model.predict(data)
print(result)
# Use following line for analytics as mean, std...
# result = model.predict(None)
```
### Command: felt-export
You can use `felt-export` for converting trained models into pickle object:
Resulting file will then contain a pickled object of scikit-learn model.
```bash
felt-export --input "final-model-House Prices.json" --output "model.pkl"
```
Then you can use the created file as follows:
```python
import pickle
with open('model.pkl', 'rb') as f:
model = pickle.load(object, f)
# See the above code example for data definition
model.predict(data)
```
Raw data
{
"_id": null,
"home_page": "https://feltlabs.ai/",
"name": "feltlabs",
"maintainer": "FELT Labs",
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": "info@bretahajek.com",
"keywords": "Federated Learning,Web3,Machine Learning",
"author": "FELT Labs",
"author_email": "",
"download_url": "https://files.pythonhosted.org/packages/ae/c3/cacae1f769863726fab8efd6651c048c96bee6ce7c76c32e0cfb1475cc19/feltlabs-0.5.1.tar.gz",
"platform": "Windows",
"description": "This code is intended to work closely with Ocean protocol. Algorithms from this code\nshould run on ocean provider. Training local models and aggregating them into global\nmodel.\n\nEntry commands:\n\n```bash\nfelt-train\nfelt-aggregate\nfelt-export\n```\n\n## Common Usage\n\nAfter installing this library you can load models trained using FELT as:\n```python\nfrom feltlabs.model import load_model\n\n# Load scikit-learn model\nmodel = load_model(\"final-model.json\")\n\n# Data shape must be: (number_of_samples, number_of_features)\ndata = [\n [1980, 2, 2, 2, 0, 0],\n [1700, 3, 2, 3, 1, 1],\n [2100, 3, 2, 3, 1, 0],\n]\n\nresult = model.predict(data)\nprint(result)\n# Use following line for analytics as mean, std...\n# result = model.predict(None)\n```\n\n### Command: felt-export\nYou can use `felt-export` for converting trained models into pickle object:\nResulting file will then contain a pickled object of scikit-learn model.\n\n```bash\nfelt-export --input \"final-model-House Prices.json\" --output \"model.pkl\"\n```\n\nThen you can use the created file as follows:\n\n```python\nimport pickle\n\nwith open('model.pkl', 'rb') as f:\n model = pickle.load(object, f)\n \n# See the above code example for data definition\nmodel.predict(data)\n```\n\n\n",
"bugtrack_url": null,
"license": "GPL-3.0 License",
"summary": "FELT python package intended for running federated learning on Ocean protocol.",
"version": "0.5.1",
"split_keywords": [
"federated learning",
"web3",
"machine learning"
],
"urls": [
{
"comment_text": "",
"digests": {
"md5": "98382f67c41d710e24499d44fd74339e",
"sha256": "6af0066de2a1cf12a909d50d67b341e28f1d5e2ba615c3c5f46632bde20bbdf7"
},
"downloads": -1,
"filename": "feltlabs-0.5.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "98382f67c41d710e24499d44fd74339e",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 44255,
"upload_time": "2022-12-23T22:27:07",
"upload_time_iso_8601": "2022-12-23T22:27:07.377986Z",
"url": "https://files.pythonhosted.org/packages/70/38/80c7aa41370636f665e4d08c3b9917b3ca68ae96d2f0afaa2826548f71da/feltlabs-0.5.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"md5": "43b9bc6ff851e064e7997786d48bd2ab",
"sha256": "1e35e48631e7a28acec461e70e417cde1a150292a50221769d036f5d20a3f9f7"
},
"downloads": -1,
"filename": "feltlabs-0.5.1.tar.gz",
"has_sig": false,
"md5_digest": "43b9bc6ff851e064e7997786d48bd2ab",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 34309,
"upload_time": "2022-12-23T22:27:08",
"upload_time_iso_8601": "2022-12-23T22:27:08.595389Z",
"url": "https://files.pythonhosted.org/packages/ae/c3/cacae1f769863726fab8efd6651c048c96bee6ce7c76c32e0cfb1475cc19/feltlabs-0.5.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2022-12-23 22:27:08",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "feltlabs"
}