fermo-core


Namefermo-core JSON
Version 0.4.3 PyPI version JSON
download
home_pageNone
SummaryData processing/analysis functionality of metabolomics dashboard FERMO
upload_time2024-07-22 19:51:18
maintainerNone
docs_urlNone
authorNone
requires_python<3.12,>=3.11
licenseNone
keywords cheminformatics genomics metabolomics
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            fermo_core
=========

[![DOI](https://zenodo.org/badge/671395100.svg)](https://zenodo.org/doi/10.5281/zenodo.11259126) [![PyPI version](https://badge.fury.io/py/fermo_core.svg)](https://badge.fury.io/py/fermo_core)

`fermo_core` is a Python-based command line tool to process, analyze, and prioritize compounds from metabolomics data. While primarily intended to be the backend processing module of `fermo_gui` of the application FERMO, `fermo_core` can be used independently for large-scale data processing and analysis. 

This README specifies the use of `fermo_core` as command line interface. For a more user-friendly version, see the [FERMO online](https://fermo.bioinformatics.nl). Please also consult the [Documentation](https://mmzdouc.github.io/fermo_docs/).


Table of Contents
-----------------
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Usage](#usage)
- [Attribution](#attribution)
- [Contributing](#contributing)

## Installation

### With `pip` from PyPI
- Install `python 3.11.x`
- Create a virtual environment (e.g. venv, conda) and activate it
- Run `pip install fermo_core`
- Once installed, run as specified in [Run with `pip`](#run-with-pip)

### With `hatch` from GitHub
- Install `python 3.11.x`
- Install hatch (e.g. with `pipx install hatch`)
- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)
- (Change into the fermo_core base directory if not already present)
- Run `hatch -v env create`
- Once installed, run as specified in [Run with `hatch`](#run-with-hatch)

### With `conda` from GitHub
- Install conda (e.g. miniconda)
- Create a conda environment with `conda create --name fermo_core python=3.11`
- Activate the conda environment with `conda activate fermo_core`
- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)
- (Change into the fermo_core base directory if not already present)
- Run `pip install -e .`
- Once installed, run as specified in [Run with `conda`](#run-with-conda)

## Quick Start

### Run with `pip`
- `fermo_core --parameters <your_parameter_file.json>`

### Run with `hatch`:
- `hatch run fermo_core --parameters <your_parameter_file.json>`

### Run with `conda`:
- `python fermo_core/main.py --parameters <your_parameter_file.json>`

## Usage

`fermo_core` can be used both as a command line interface as well as a library.

All parameters and input data are specified in a `parameters.json` file be formatted following the schema specified in `fermo_core/config/schema.json`. See the example in `example_data/case_study_parameters.json` and/or consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/core.parameters/).

As **minimum** data input, fermo_core` requires a pre-processed **peaktable** summarizing the detected molecular features (**no raw data**). This peaktable must:
- Derive from liquid chromatography electrospray ionization (tandem) mass spectrometry **(LC-ESI-(MS/)MS)**
- Constitute of samples acquired at identical **concentration/dilution** and identical **injection volume**
- Be acquired using **untargeted** Data-dependent acquisition **(DDA)**
- Be of high resolution (ideally, **<20 ppm** mass deviation)
- Be in a single polarity (either **positive** or **negative** ion mode)

Optionally (but recommended), `fermo_core` also accepts the following file types:
- Mass fragmentation **(MS/MS)** accompanying the peak table
- Metadata on **sample grouping**
- **Phenotype** (bioactivity) data associated with the samples
- A **spectral library**
- An [**MS2Query**](https://github.com/iomega/ms2query) results file
- An [**antiSMASH**](https://antismash.secondarymetabolites.org) results folder

For more information on input and output files, their format, and their purpose, consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/input_output/).

## Attribution

### License

`fermo_core` is an open source tool licensed under the MIT license (see [LICENSE](LICENSE.md)).

### Publications

See [FERMO online](https://fermo.bioinformatics.nl/) for information on citing `fermo_core`.

### Authors
Mitja M. Zdouc <zdoucmm@gmail.com>

## Contributing

Contributions, whether filing an issue, making a pull request, or forking, are appreciated. Please see [Contributing](CONTRIBUTING.md) for more information on getting involved.
Contributors agree to adhere to the specified [Code of Conduct](CODE_OF_CONDUCT.md).
For technical details, see the For Developers pages in the [Documentation](https://mmzdouc.github.io/fermo_docs/for_devs/overview/).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fermo-core",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.12,>=3.11",
    "maintainer_email": null,
    "keywords": "cheminformatics, genomics, metabolomics",
    "author": null,
    "author_email": "\"Mitja M. Zdouc\" <zdoucmm@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/f9/45/18498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23/fermo_core-0.4.3.tar.gz",
    "platform": null,
    "description": "fermo_core\n=========\n\n[![DOI](https://zenodo.org/badge/671395100.svg)](https://zenodo.org/doi/10.5281/zenodo.11259126) [![PyPI version](https://badge.fury.io/py/fermo_core.svg)](https://badge.fury.io/py/fermo_core)\n\n`fermo_core` is a Python-based command line tool to process, analyze, and prioritize compounds from metabolomics data. While primarily intended to be the backend processing module of `fermo_gui` of the application FERMO, `fermo_core` can be used independently for large-scale data processing and analysis. \n\nThis README specifies the use of `fermo_core` as command line interface. For a more user-friendly version, see the [FERMO online](https://fermo.bioinformatics.nl). Please also consult the [Documentation](https://mmzdouc.github.io/fermo_docs/).\n\n\nTable of Contents\n-----------------\n- [Installation](#installation)\n- [Quick Start](#quick-start)\n- [Usage](#usage)\n- [Attribution](#attribution)\n- [Contributing](#contributing)\n\n## Installation\n\n### With `pip` from PyPI\n- Install `python 3.11.x`\n- Create a virtual environment (e.g. venv, conda) and activate it\n- Run `pip install fermo_core`\n- Once installed, run as specified in [Run with `pip`](#run-with-pip)\n\n### With `hatch` from GitHub\n- Install `python 3.11.x`\n- Install hatch (e.g. with `pipx install hatch`)\n- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)\n- (Change into the fermo_core base directory if not already present)\n- Run `hatch -v env create`\n- Once installed, run as specified in [Run with `hatch`](#run-with-hatch)\n\n### With `conda` from GitHub\n- Install conda (e.g. miniconda)\n- Create a conda environment with `conda create --name fermo_core python=3.11`\n- Activate the conda environment with `conda activate fermo_core`\n- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)\n- (Change into the fermo_core base directory if not already present)\n- Run `pip install -e .`\n- Once installed, run as specified in [Run with `conda`](#run-with-conda)\n\n## Quick Start\n\n### Run with `pip`\n- `fermo_core --parameters <your_parameter_file.json>`\n\n### Run with `hatch`:\n- `hatch run fermo_core --parameters <your_parameter_file.json>`\n\n### Run with `conda`:\n- `python fermo_core/main.py --parameters <your_parameter_file.json>`\n\n## Usage\n\n`fermo_core` can be used both as a command line interface as well as a library.\n\nAll parameters and input data are specified in a `parameters.json` file be formatted following the schema specified in `fermo_core/config/schema.json`. See the example in `example_data/case_study_parameters.json` and/or consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/core.parameters/).\n\nAs **minimum** data input, fermo_core` requires a pre-processed **peaktable** summarizing the detected molecular features (**no raw data**). This peaktable must:\n- Derive from liquid chromatography electrospray ionization (tandem) mass spectrometry **(LC-ESI-(MS/)MS)**\n- Constitute of samples acquired at identical **concentration/dilution** and identical **injection volume**\n- Be acquired using **untargeted** Data-dependent acquisition **(DDA)**\n- Be of high resolution (ideally, **<20 ppm** mass deviation)\n- Be in a single polarity (either **positive** or **negative** ion mode)\n\nOptionally (but recommended), `fermo_core` also accepts the following file types:\n- Mass fragmentation **(MS/MS)** accompanying the peak table\n- Metadata on **sample grouping**\n- **Phenotype** (bioactivity) data associated with the samples\n- A **spectral library**\n- An [**MS2Query**](https://github.com/iomega/ms2query) results file\n- An [**antiSMASH**](https://antismash.secondarymetabolites.org) results folder\n\nFor more information on input and output files, their format, and their purpose, consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/input_output/).\n\n## Attribution\n\n### License\n\n`fermo_core` is an open source tool licensed under the MIT license (see [LICENSE](LICENSE.md)).\n\n### Publications\n\nSee [FERMO online](https://fermo.bioinformatics.nl/) for information on citing `fermo_core`.\n\n### Authors\nMitja M. Zdouc <zdoucmm@gmail.com>\n\n## Contributing\n\nContributions, whether filing an issue, making a pull request, or forking, are appreciated. Please see [Contributing](CONTRIBUTING.md) for more information on getting involved.\nContributors agree to adhere to the specified [Code of Conduct](CODE_OF_CONDUCT.md).\nFor technical details, see the For Developers pages in the [Documentation](https://mmzdouc.github.io/fermo_docs/for_devs/overview/).\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Data processing/analysis functionality of metabolomics dashboard FERMO",
    "version": "0.4.3",
    "project_urls": {
        "Documentation": "https://mmzdouc.github.io/fermo_docs/",
        "Repository": "https://github.com/mmzdouc/fermo_core",
        "Website": "https://fermo.bioinformatics.nl/"
    },
    "split_keywords": [
        "cheminformatics",
        " genomics",
        " metabolomics"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bf5dbd027fcb9d64819ccf122e9ae5f4318be66fadb50db93e0163a2bc1f3f2f",
                "md5": "24791fbebf7f090bf0f51abbf9586873",
                "sha256": "d1de9b1de4f75157cc147ea31850c041ee839b6649a33b56d212ad23431daad6"
            },
            "downloads": -1,
            "filename": "fermo_core-0.4.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "24791fbebf7f090bf0f51abbf9586873",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.12,>=3.11",
            "size": 1220976,
            "upload_time": "2024-07-22T19:51:15",
            "upload_time_iso_8601": "2024-07-22T19:51:15.956822Z",
            "url": "https://files.pythonhosted.org/packages/bf/5d/bd027fcb9d64819ccf122e9ae5f4318be66fadb50db93e0163a2bc1f3f2f/fermo_core-0.4.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f94518498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23",
                "md5": "d79aac10f12e3e6476d9579d0a1ceedb",
                "sha256": "0aa88007488ebf90fef1acc21e0645257f4255981a0a29b606836da487f071a5"
            },
            "downloads": -1,
            "filename": "fermo_core-0.4.3.tar.gz",
            "has_sig": false,
            "md5_digest": "d79aac10f12e3e6476d9579d0a1ceedb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.12,>=3.11",
            "size": 1153653,
            "upload_time": "2024-07-22T19:51:18",
            "upload_time_iso_8601": "2024-07-22T19:51:18.200147Z",
            "url": "https://files.pythonhosted.org/packages/f9/45/18498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23/fermo_core-0.4.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-07-22 19:51:18",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "mmzdouc",
    "github_project": "fermo_core",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fermo-core"
}
        
Elapsed time: 3.94017s