Name | fermo-core JSON |
Version |
0.4.3
JSON |
| download |
home_page | None |
Summary | Data processing/analysis functionality of metabolomics dashboard FERMO |
upload_time | 2024-07-22 19:51:18 |
maintainer | None |
docs_url | None |
author | None |
requires_python | <3.12,>=3.11 |
license | None |
keywords |
cheminformatics
genomics
metabolomics
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
fermo_core
=========
[![DOI](https://zenodo.org/badge/671395100.svg)](https://zenodo.org/doi/10.5281/zenodo.11259126) [![PyPI version](https://badge.fury.io/py/fermo_core.svg)](https://badge.fury.io/py/fermo_core)
`fermo_core` is a Python-based command line tool to process, analyze, and prioritize compounds from metabolomics data. While primarily intended to be the backend processing module of `fermo_gui` of the application FERMO, `fermo_core` can be used independently for large-scale data processing and analysis.
This README specifies the use of `fermo_core` as command line interface. For a more user-friendly version, see the [FERMO online](https://fermo.bioinformatics.nl). Please also consult the [Documentation](https://mmzdouc.github.io/fermo_docs/).
Table of Contents
-----------------
- [Installation](#installation)
- [Quick Start](#quick-start)
- [Usage](#usage)
- [Attribution](#attribution)
- [Contributing](#contributing)
## Installation
### With `pip` from PyPI
- Install `python 3.11.x`
- Create a virtual environment (e.g. venv, conda) and activate it
- Run `pip install fermo_core`
- Once installed, run as specified in [Run with `pip`](#run-with-pip)
### With `hatch` from GitHub
- Install `python 3.11.x`
- Install hatch (e.g. with `pipx install hatch`)
- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)
- (Change into the fermo_core base directory if not already present)
- Run `hatch -v env create`
- Once installed, run as specified in [Run with `hatch`](#run-with-hatch)
### With `conda` from GitHub
- Install conda (e.g. miniconda)
- Create a conda environment with `conda create --name fermo_core python=3.11`
- Activate the conda environment with `conda activate fermo_core`
- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)
- (Change into the fermo_core base directory if not already present)
- Run `pip install -e .`
- Once installed, run as specified in [Run with `conda`](#run-with-conda)
## Quick Start
### Run with `pip`
- `fermo_core --parameters <your_parameter_file.json>`
### Run with `hatch`:
- `hatch run fermo_core --parameters <your_parameter_file.json>`
### Run with `conda`:
- `python fermo_core/main.py --parameters <your_parameter_file.json>`
## Usage
`fermo_core` can be used both as a command line interface as well as a library.
All parameters and input data are specified in a `parameters.json` file be formatted following the schema specified in `fermo_core/config/schema.json`. See the example in `example_data/case_study_parameters.json` and/or consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/core.parameters/).
As **minimum** data input, fermo_core` requires a pre-processed **peaktable** summarizing the detected molecular features (**no raw data**). This peaktable must:
- Derive from liquid chromatography electrospray ionization (tandem) mass spectrometry **(LC-ESI-(MS/)MS)**
- Constitute of samples acquired at identical **concentration/dilution** and identical **injection volume**
- Be acquired using **untargeted** Data-dependent acquisition **(DDA)**
- Be of high resolution (ideally, **<20 ppm** mass deviation)
- Be in a single polarity (either **positive** or **negative** ion mode)
Optionally (but recommended), `fermo_core` also accepts the following file types:
- Mass fragmentation **(MS/MS)** accompanying the peak table
- Metadata on **sample grouping**
- **Phenotype** (bioactivity) data associated with the samples
- A **spectral library**
- An [**MS2Query**](https://github.com/iomega/ms2query) results file
- An [**antiSMASH**](https://antismash.secondarymetabolites.org) results folder
For more information on input and output files, their format, and their purpose, consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/input_output/).
## Attribution
### License
`fermo_core` is an open source tool licensed under the MIT license (see [LICENSE](LICENSE.md)).
### Publications
See [FERMO online](https://fermo.bioinformatics.nl/) for information on citing `fermo_core`.
### Authors
Mitja M. Zdouc <zdoucmm@gmail.com>
## Contributing
Contributions, whether filing an issue, making a pull request, or forking, are appreciated. Please see [Contributing](CONTRIBUTING.md) for more information on getting involved.
Contributors agree to adhere to the specified [Code of Conduct](CODE_OF_CONDUCT.md).
For technical details, see the For Developers pages in the [Documentation](https://mmzdouc.github.io/fermo_docs/for_devs/overview/).
Raw data
{
"_id": null,
"home_page": null,
"name": "fermo-core",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.12,>=3.11",
"maintainer_email": null,
"keywords": "cheminformatics, genomics, metabolomics",
"author": null,
"author_email": "\"Mitja M. Zdouc\" <zdoucmm@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/f9/45/18498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23/fermo_core-0.4.3.tar.gz",
"platform": null,
"description": "fermo_core\n=========\n\n[![DOI](https://zenodo.org/badge/671395100.svg)](https://zenodo.org/doi/10.5281/zenodo.11259126) [![PyPI version](https://badge.fury.io/py/fermo_core.svg)](https://badge.fury.io/py/fermo_core)\n\n`fermo_core` is a Python-based command line tool to process, analyze, and prioritize compounds from metabolomics data. While primarily intended to be the backend processing module of `fermo_gui` of the application FERMO, `fermo_core` can be used independently for large-scale data processing and analysis. \n\nThis README specifies the use of `fermo_core` as command line interface. For a more user-friendly version, see the [FERMO online](https://fermo.bioinformatics.nl). Please also consult the [Documentation](https://mmzdouc.github.io/fermo_docs/).\n\n\nTable of Contents\n-----------------\n- [Installation](#installation)\n- [Quick Start](#quick-start)\n- [Usage](#usage)\n- [Attribution](#attribution)\n- [Contributing](#contributing)\n\n## Installation\n\n### With `pip` from PyPI\n- Install `python 3.11.x`\n- Create a virtual environment (e.g. venv, conda) and activate it\n- Run `pip install fermo_core`\n- Once installed, run as specified in [Run with `pip`](#run-with-pip)\n\n### With `hatch` from GitHub\n- Install `python 3.11.x`\n- Install hatch (e.g. with `pipx install hatch`)\n- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)\n- (Change into the fermo_core base directory if not already present)\n- Run `hatch -v env create`\n- Once installed, run as specified in [Run with `hatch`](#run-with-hatch)\n\n### With `conda` from GitHub\n- Install conda (e.g. miniconda)\n- Create a conda environment with `conda create --name fermo_core python=3.11`\n- Activate the conda environment with `conda activate fermo_core`\n- Download or clone the [repository](https://github.com/mmzdouc/fermo_core)\n- (Change into the fermo_core base directory if not already present)\n- Run `pip install -e .`\n- Once installed, run as specified in [Run with `conda`](#run-with-conda)\n\n## Quick Start\n\n### Run with `pip`\n- `fermo_core --parameters <your_parameter_file.json>`\n\n### Run with `hatch`:\n- `hatch run fermo_core --parameters <your_parameter_file.json>`\n\n### Run with `conda`:\n- `python fermo_core/main.py --parameters <your_parameter_file.json>`\n\n## Usage\n\n`fermo_core` can be used both as a command line interface as well as a library.\n\nAll parameters and input data are specified in a `parameters.json` file be formatted following the schema specified in `fermo_core/config/schema.json`. See the example in `example_data/case_study_parameters.json` and/or consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/core.parameters/).\n\nAs **minimum** data input, fermo_core` requires a pre-processed **peaktable** summarizing the detected molecular features (**no raw data**). This peaktable must:\n- Derive from liquid chromatography electrospray ionization (tandem) mass spectrometry **(LC-ESI-(MS/)MS)**\n- Constitute of samples acquired at identical **concentration/dilution** and identical **injection volume**\n- Be acquired using **untargeted** Data-dependent acquisition **(DDA)**\n- Be of high resolution (ideally, **<20 ppm** mass deviation)\n- Be in a single polarity (either **positive** or **negative** ion mode)\n\nOptionally (but recommended), `fermo_core` also accepts the following file types:\n- Mass fragmentation **(MS/MS)** accompanying the peak table\n- Metadata on **sample grouping**\n- **Phenotype** (bioactivity) data associated with the samples\n- A **spectral library**\n- An [**MS2Query**](https://github.com/iomega/ms2query) results file\n- An [**antiSMASH**](https://antismash.secondarymetabolites.org) results folder\n\nFor more information on input and output files, their format, and their purpose, consult the [Documentation](https://mmzdouc.github.io/fermo_docs/home/input_output/).\n\n## Attribution\n\n### License\n\n`fermo_core` is an open source tool licensed under the MIT license (see [LICENSE](LICENSE.md)).\n\n### Publications\n\nSee [FERMO online](https://fermo.bioinformatics.nl/) for information on citing `fermo_core`.\n\n### Authors\nMitja M. Zdouc <zdoucmm@gmail.com>\n\n## Contributing\n\nContributions, whether filing an issue, making a pull request, or forking, are appreciated. Please see [Contributing](CONTRIBUTING.md) for more information on getting involved.\nContributors agree to adhere to the specified [Code of Conduct](CODE_OF_CONDUCT.md).\nFor technical details, see the For Developers pages in the [Documentation](https://mmzdouc.github.io/fermo_docs/for_devs/overview/).\n",
"bugtrack_url": null,
"license": null,
"summary": "Data processing/analysis functionality of metabolomics dashboard FERMO",
"version": "0.4.3",
"project_urls": {
"Documentation": "https://mmzdouc.github.io/fermo_docs/",
"Repository": "https://github.com/mmzdouc/fermo_core",
"Website": "https://fermo.bioinformatics.nl/"
},
"split_keywords": [
"cheminformatics",
" genomics",
" metabolomics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "bf5dbd027fcb9d64819ccf122e9ae5f4318be66fadb50db93e0163a2bc1f3f2f",
"md5": "24791fbebf7f090bf0f51abbf9586873",
"sha256": "d1de9b1de4f75157cc147ea31850c041ee839b6649a33b56d212ad23431daad6"
},
"downloads": -1,
"filename": "fermo_core-0.4.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "24791fbebf7f090bf0f51abbf9586873",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.12,>=3.11",
"size": 1220976,
"upload_time": "2024-07-22T19:51:15",
"upload_time_iso_8601": "2024-07-22T19:51:15.956822Z",
"url": "https://files.pythonhosted.org/packages/bf/5d/bd027fcb9d64819ccf122e9ae5f4318be66fadb50db93e0163a2bc1f3f2f/fermo_core-0.4.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f94518498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23",
"md5": "d79aac10f12e3e6476d9579d0a1ceedb",
"sha256": "0aa88007488ebf90fef1acc21e0645257f4255981a0a29b606836da487f071a5"
},
"downloads": -1,
"filename": "fermo_core-0.4.3.tar.gz",
"has_sig": false,
"md5_digest": "d79aac10f12e3e6476d9579d0a1ceedb",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.12,>=3.11",
"size": 1153653,
"upload_time": "2024-07-22T19:51:18",
"upload_time_iso_8601": "2024-07-22T19:51:18.200147Z",
"url": "https://files.pythonhosted.org/packages/f9/45/18498f2d42f33a59e663e99ac319a82805cfb5f7bbb3d5e850fb667a0d23/fermo_core-0.4.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-07-22 19:51:18",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "mmzdouc",
"github_project": "fermo_core",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fermo-core"
}