ffn


Nameffn JSON
Version 1.1.2 PyPI version JSON
download
home_pageNone
SummaryFinancial functions for Python
upload_time2025-02-11 21:08:04
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords python finance quant quant finance algotrading algorithmic trading
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ![](http://pmorissette.github.io/ffn/_static/logo.png)

[![Build Status](https://github.com/pmorissette/ffn/workflows/Build%20Status/badge.svg)](https://github.com/pmorissette/ffn/actions/)
[![PyPI Version](https://img.shields.io/pypi/v/ffn)](https://pypi.org/project/ffn/)
[![PyPI License](https://img.shields.io/pypi/l/ffn)](https://pypi.org/project/ffn/)

# ffn - Financial Functions for Python

Alpha release - please let me know if you find any bugs!

If you are looking for a full backtesting framework, please check out [bt](https://github.com/pmorissette/bt).
bt is built atop ffn and makes it easy and fast to backtest quantitative strategies.

## Overview

ffn is a library that contains many useful functions for those who work in **quantitative
finance**. It stands on the shoulders of giants (Pandas, Numpy, Scipy, etc.) and provides
a vast array of utilities, from performance measurement and evaluation to
graphing and common data transformations.

```python
import ffn
returns = ffn.get('aapl,msft,c,gs,ge', start='2010-01-01').to_returns().dropna()
returns.calc_mean_var_weights().as_format('.2%')
    aapl    62.54%
    c       -0.00%
    ge      36.19%
    gs      -0.00%
    msft     1.26%
    dtype: object
```


## Installation

The easiest way to install `ffn` is from the [Python Package Index](https://pypi.python.org/pypi/ffn/)
using `pip`.

```bash
pip install ffn
```

Since ffn has many dependencies, we strongly recommend installing the [Anaconda Scientific Python Distribution](https://store.continuum.io/cshop/anaconda/). This distribution comes with many of the required packages pre-installed, including pip. Once Anaconda is installed, the above command should complete the installation.

## Documentation

Read the docs at http://pmorissette.github.io/ffn

- [Quickstart](http://pmorissette.github.io/ffn/quick.html)
- [Full API](http://pmorissette.github.io/ffn/ffn.html)

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ffn",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "python, finance, quant, quant finance, algotrading, algorithmic trading",
    "author": null,
    "author_email": "Philippe Morissette <morissette.philippe@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/ca/c2/f112291c7cd15294d7fbcc1098391887bf4b83501ae8091c02edfb9d5e2b/ffn-1.1.2.tar.gz",
    "platform": null,
    "description": "![](http://pmorissette.github.io/ffn/_static/logo.png)\n\n[![Build Status](https://github.com/pmorissette/ffn/workflows/Build%20Status/badge.svg)](https://github.com/pmorissette/ffn/actions/)\n[![PyPI Version](https://img.shields.io/pypi/v/ffn)](https://pypi.org/project/ffn/)\n[![PyPI License](https://img.shields.io/pypi/l/ffn)](https://pypi.org/project/ffn/)\n\n# ffn - Financial Functions for Python\n\nAlpha release - please let me know if you find any bugs!\n\nIf you are looking for a full backtesting framework, please check out [bt](https://github.com/pmorissette/bt).\nbt is built atop ffn and makes it easy and fast to backtest quantitative strategies.\n\n## Overview\n\nffn is a library that contains many useful functions for those who work in **quantitative\nfinance**. It stands on the shoulders of giants (Pandas, Numpy, Scipy, etc.) and provides\na vast array of utilities, from performance measurement and evaluation to\ngraphing and common data transformations.\n\n```python\nimport ffn\nreturns = ffn.get('aapl,msft,c,gs,ge', start='2010-01-01').to_returns().dropna()\nreturns.calc_mean_var_weights().as_format('.2%')\n    aapl    62.54%\n    c       -0.00%\n    ge      36.19%\n    gs      -0.00%\n    msft     1.26%\n    dtype: object\n```\n\n\n## Installation\n\nThe easiest way to install `ffn` is from the [Python Package Index](https://pypi.python.org/pypi/ffn/)\nusing `pip`.\n\n```bash\npip install ffn\n```\n\nSince ffn has many dependencies, we strongly recommend installing the [Anaconda Scientific Python Distribution](https://store.continuum.io/cshop/anaconda/). This distribution comes with many of the required packages pre-installed, including pip. Once Anaconda is installed, the above command should complete the installation.\n\n## Documentation\n\nRead the docs at http://pmorissette.github.io/ffn\n\n- [Quickstart](http://pmorissette.github.io/ffn/quick.html)\n- [Full API](http://pmorissette.github.io/ffn/ffn.html)\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Financial functions for Python",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "http://pmorissette.github.io/ffn/",
        "Repository": "https://github.com/pmorissette/ffn"
    },
    "split_keywords": [
        "python",
        " finance",
        " quant",
        " quant finance",
        " algotrading",
        " algorithmic trading"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "af4fcf4575c95bcbd3af3a0659957bab653327980cc1880b2197590858033433",
                "md5": "3ff499ef9a10119841c705866248c97d",
                "sha256": "ce7ee576ba17c7a518ef6a8025a69470ad48850fe618723f2c31b57b58c5b165"
            },
            "downloads": -1,
            "filename": "ffn-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3ff499ef9a10119841c705866248c97d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 26330,
            "upload_time": "2025-02-11T21:08:01",
            "upload_time_iso_8601": "2025-02-11T21:08:01.653001Z",
            "url": "https://files.pythonhosted.org/packages/af/4f/cf4575c95bcbd3af3a0659957bab653327980cc1880b2197590858033433/ffn-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cac2f112291c7cd15294d7fbcc1098391887bf4b83501ae8091c02edfb9d5e2b",
                "md5": "599557722883f5d81cf03bfc2111b42c",
                "sha256": "23628944a7cb048129b5f1abceef0777faa43307601c095dbcdcb7bc5c19d514"
            },
            "downloads": -1,
            "filename": "ffn-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "599557722883f5d81cf03bfc2111b42c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 27201,
            "upload_time": "2025-02-11T21:08:04",
            "upload_time_iso_8601": "2025-02-11T21:08:04.507679Z",
            "url": "https://files.pythonhosted.org/packages/ca/c2/f112291c7cd15294d7fbcc1098391887bf4b83501ae8091c02edfb9d5e2b/ffn-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-11 21:08:04",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "pmorissette",
    "github_project": "ffn",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "ffn"
}
        
Elapsed time: 3.96033s