Name | fftLoss JSON |
Version |
0.0.1
JSON |
| download |
home_page | None |
Summary | The fftLoss @PyTorch is a frequency domain loss function that prevents the problem of weak frequency components being suppressed by strong frequency components when using a regular loss function. |
upload_time | 2025-07-30 13:41:24 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | None |
keywords |
fftloss
loss
pytorch
ai
neural
nn
fft
|
VCS |
 |
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# fftLoss
The fftLoss @PyTorch is a frequency domain loss function that prevents the problem of weak frequency components being suppressed by strong frequency components when using a regular loss function.
## 思路说明
在使用MSE等从时域或空域计算的损失函数时,常常得到模糊的结果.这是由于强势频率压制了弱势频率的表达.通过在频域对相位和幅值分别计算差异缓解了这个问题.这使得网络更偏向于生成边缘锐利的结果.
## Install
```bash
pip install fftLoss
```
## Use
```python
from fftLoss import fftLoss
...
loss=fftLoss(input,target,dim=-1,meanOut=True,norm="ortho",absGain=1,angleGain=1)
```
## HomePage
<https://github.com/PsycheHalo/fftLoss/>
Raw data
{
"_id": null,
"home_page": null,
"name": "fftLoss",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "fftLoss, Loss, PyTorch, AI, neural, NN, FFT",
"author": null,
"author_email": "Psyche Halo <Psyche@WinsGod.com>",
"download_url": "https://files.pythonhosted.org/packages/06/33/ddba89c61db740b4e705c6c108ed2be589dc6109f280e86f3d720a880e66/fftloss-0.0.1.tar.gz",
"platform": null,
"description": "# fftLoss\nThe fftLoss @PyTorch is a frequency domain loss function that prevents the problem of weak frequency components being suppressed by strong frequency components when using a regular loss function. \n\n## \u601d\u8def\u8bf4\u660e\n\u5728\u4f7f\u7528MSE\u7b49\u4ece\u65f6\u57df\u6216\u7a7a\u57df\u8ba1\u7b97\u7684\u635f\u5931\u51fd\u6570\u65f6,\u5e38\u5e38\u5f97\u5230\u6a21\u7cca\u7684\u7ed3\u679c.\u8fd9\u662f\u7531\u4e8e\u5f3a\u52bf\u9891\u7387\u538b\u5236\u4e86\u5f31\u52bf\u9891\u7387\u7684\u8868\u8fbe.\u901a\u8fc7\u5728\u9891\u57df\u5bf9\u76f8\u4f4d\u548c\u5e45\u503c\u5206\u522b\u8ba1\u7b97\u5dee\u5f02\u7f13\u89e3\u4e86\u8fd9\u4e2a\u95ee\u9898.\u8fd9\u4f7f\u5f97\u7f51\u7edc\u66f4\u504f\u5411\u4e8e\u751f\u6210\u8fb9\u7f18\u9510\u5229\u7684\u7ed3\u679c.\n\n## Install\n```bash\npip install fftLoss\n```\n\n## Use\n```python\nfrom fftLoss import fftLoss\n...\nloss=fftLoss(input,target,dim=-1,meanOut=True,norm=\"ortho\",absGain=1,angleGain=1)\n```\n\n## HomePage\n<https://github.com/PsycheHalo/fftLoss/>\n",
"bugtrack_url": null,
"license": null,
"summary": "The fftLoss @PyTorch is a frequency domain loss function that prevents the problem of weak frequency components being suppressed by strong frequency components when using a regular loss function. ",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/PsycheHalo/fftLoss",
"Issues": "https://github.com/PsycheHalo/fftLoss/issues"
},
"split_keywords": [
"fftloss",
" loss",
" pytorch",
" ai",
" neural",
" nn",
" fft"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "b26b11e575562236f5cd0f9b1725ac23427515d6681a315dbf905d228f901ad4",
"md5": "5ff7f6660d5b8978a31909d6285ae8fd",
"sha256": "ed07f408139719dd9b852c6db1dfb4925114936291b26086b159a8cc42b42e6e"
},
"downloads": -1,
"filename": "fftloss-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "5ff7f6660d5b8978a31909d6285ae8fd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 7842,
"upload_time": "2025-07-30T13:41:23",
"upload_time_iso_8601": "2025-07-30T13:41:23.702768Z",
"url": "https://files.pythonhosted.org/packages/b2/6b/11e575562236f5cd0f9b1725ac23427515d6681a315dbf905d228f901ad4/fftloss-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "0633ddba89c61db740b4e705c6c108ed2be589dc6109f280e86f3d720a880e66",
"md5": "6dfdacaca3ab3d879ff1151d829b52f2",
"sha256": "4d72918f2b2d8e81cfe5fef6a74f8a5cd155616911aee10b2d45c60d99a76786"
},
"downloads": -1,
"filename": "fftloss-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "6dfdacaca3ab3d879ff1151d829b52f2",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 7480,
"upload_time": "2025-07-30T13:41:24",
"upload_time_iso_8601": "2025-07-30T13:41:24.946726Z",
"url": "https://files.pythonhosted.org/packages/06/33/ddba89c61db740b4e705c6c108ed2be589dc6109f280e86f3d720a880e66/fftloss-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-07-30 13:41:24",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "PsycheHalo",
"github_project": "fftLoss",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fftloss"
}