fibermc


Namefibermc JSON
Version 0.0.4 PyPI version JSON
download
home_pageNone
SummaryA Jax-based differentiable Monte Carlo estimator with applications to differentiable simulation, computational geometry, and topology optimization.
upload_time2024-12-10 19:42:08
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseMIT
keywords computational geometry implicit differentiation jax optimization topology optimization
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Fiber Monte Carlo 

Fiber Monte Carlo (FMC) is a differentiable variant of the [simple Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method) estimator designed with 
low-dimensional geometric-oriented applications in mind. The methodological and theoretical aspects of FMC are outlined in the accompanying [paper](https://openreview.net/pdf?id=sP1tCl2QBk), but this Python package contains implementations of a variety of general-purpose estimators with FMC as the underlying method, as well as utilities specific applications like computational geometry, differentiable rendering and topology optimization. 

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "fibermc",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": "computational geometry, implicit differentiation, jax, optimization, topology optimization",
    "author": null,
    "author_email": "Nick Richardson <njkrichardson@princeton.edu>",
    "download_url": "https://files.pythonhosted.org/packages/56/4e/cc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810/fibermc-0.0.4.tar.gz",
    "platform": null,
    "description": "# Fiber Monte Carlo \n\nFiber Monte Carlo (FMC) is a differentiable variant of the [simple Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method) estimator designed with \nlow-dimensional geometric-oriented applications in mind. The methodological and theoretical aspects of FMC are outlined in the accompanying [paper](https://openreview.net/pdf?id=sP1tCl2QBk), but this Python package contains implementations of a variety of general-purpose estimators with FMC as the underlying method, as well as utilities specific applications like computational geometry, differentiable rendering and topology optimization. \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A Jax-based differentiable Monte Carlo estimator with applications to differentiable simulation, computational geometry, and topology optimization.",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/PrincetonLIPS/fibers-standalone/tree/main",
        "Issues": "https://github.com/PrincetonLIPS/fibers-standalone/issues"
    },
    "split_keywords": [
        "computational geometry",
        " implicit differentiation",
        " jax",
        " optimization",
        " topology optimization"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f586eb78b5405d84073c9ad86493fe28eaceef24f08e016d004aaced792d94c4",
                "md5": "3bd0dc5d8780a5557efd1b99b819589b",
                "sha256": "2c622bf20fe18bbced40a51c00afa2f97688773bbdefc8ca76e5617715813103"
            },
            "downloads": -1,
            "filename": "fibermc-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3bd0dc5d8780a5557efd1b99b819589b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 18901,
            "upload_time": "2024-12-10T19:42:06",
            "upload_time_iso_8601": "2024-12-10T19:42:06.959691Z",
            "url": "https://files.pythonhosted.org/packages/f5/86/eb78b5405d84073c9ad86493fe28eaceef24f08e016d004aaced792d94c4/fibermc-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "564ecc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810",
                "md5": "c55265cc97dad8b916d5e9a8efc8671a",
                "sha256": "e6a51bf02e7e41f35f41a0987ad485b62bfa34407ef42650f460b3772d187979"
            },
            "downloads": -1,
            "filename": "fibermc-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "c55265cc97dad8b916d5e9a8efc8671a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 210996,
            "upload_time": "2024-12-10T19:42:08",
            "upload_time_iso_8601": "2024-12-10T19:42:08.233577Z",
            "url": "https://files.pythonhosted.org/packages/56/4e/cc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810/fibermc-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-10 19:42:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PrincetonLIPS",
    "github_project": "fibers-standalone",
    "github_not_found": true,
    "lcname": "fibermc"
}
        
Elapsed time: 2.40306s