# Fiber Monte Carlo
Fiber Monte Carlo (FMC) is a differentiable variant of the [simple Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method) estimator designed with
low-dimensional geometric-oriented applications in mind. The methodological and theoretical aspects of FMC are outlined in the accompanying [paper](https://openreview.net/pdf?id=sP1tCl2QBk), but this Python package contains implementations of a variety of general-purpose estimators with FMC as the underlying method, as well as utilities specific applications like computational geometry, differentiable rendering and topology optimization.
Raw data
{
"_id": null,
"home_page": null,
"name": "fibermc",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "computational geometry, implicit differentiation, jax, optimization, topology optimization",
"author": null,
"author_email": "Nick Richardson <njkrichardson@princeton.edu>",
"download_url": "https://files.pythonhosted.org/packages/56/4e/cc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810/fibermc-0.0.4.tar.gz",
"platform": null,
"description": "# Fiber Monte Carlo \n\nFiber Monte Carlo (FMC) is a differentiable variant of the [simple Monte Carlo](https://en.wikipedia.org/wiki/Monte_Carlo_method) estimator designed with \nlow-dimensional geometric-oriented applications in mind. The methodological and theoretical aspects of FMC are outlined in the accompanying [paper](https://openreview.net/pdf?id=sP1tCl2QBk), but this Python package contains implementations of a variety of general-purpose estimators with FMC as the underlying method, as well as utilities specific applications like computational geometry, differentiable rendering and topology optimization. \n",
"bugtrack_url": null,
"license": "MIT",
"summary": "A Jax-based differentiable Monte Carlo estimator with applications to differentiable simulation, computational geometry, and topology optimization.",
"version": "0.0.4",
"project_urls": {
"Homepage": "https://github.com/PrincetonLIPS/fibers-standalone/tree/main",
"Issues": "https://github.com/PrincetonLIPS/fibers-standalone/issues"
},
"split_keywords": [
"computational geometry",
" implicit differentiation",
" jax",
" optimization",
" topology optimization"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "f586eb78b5405d84073c9ad86493fe28eaceef24f08e016d004aaced792d94c4",
"md5": "3bd0dc5d8780a5557efd1b99b819589b",
"sha256": "2c622bf20fe18bbced40a51c00afa2f97688773bbdefc8ca76e5617715813103"
},
"downloads": -1,
"filename": "fibermc-0.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3bd0dc5d8780a5557efd1b99b819589b",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 18901,
"upload_time": "2024-12-10T19:42:06",
"upload_time_iso_8601": "2024-12-10T19:42:06.959691Z",
"url": "https://files.pythonhosted.org/packages/f5/86/eb78b5405d84073c9ad86493fe28eaceef24f08e016d004aaced792d94c4/fibermc-0.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "564ecc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810",
"md5": "c55265cc97dad8b916d5e9a8efc8671a",
"sha256": "e6a51bf02e7e41f35f41a0987ad485b62bfa34407ef42650f460b3772d187979"
},
"downloads": -1,
"filename": "fibermc-0.0.4.tar.gz",
"has_sig": false,
"md5_digest": "c55265cc97dad8b916d5e9a8efc8671a",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 210996,
"upload_time": "2024-12-10T19:42:08",
"upload_time_iso_8601": "2024-12-10T19:42:08.233577Z",
"url": "https://files.pythonhosted.org/packages/56/4e/cc21cc6ca8089ecbe2e6457d0bb254a54115d960812d4089b3dafc1a0810/fibermc-0.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-10 19:42:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "PrincetonLIPS",
"github_project": "fibers-standalone",
"github_not_found": true,
"lcname": "fibermc"
}