# fiesta 🎉
`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x
![fiesta logo](docs/fiesta_logo.jpeg)
**NOTE:** `fiesta` is currently under development -- stay tuned!
## Installation
pip installation is currently work in progress. Install from source by cloning this Github repository and running
```
pip install -e .
```
NOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).
## Training surrogate models
To train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`
- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model.
- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure.
## Examples
- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.
- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.
## Acknowledgements
The logo was created by [ideogram AI](https://ideogram.ai/).
Raw data
{
"_id": null,
"home_page": "https://github.com/ThibeauWouters/fiestaEM",
"name": "fiestaEM",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "sampling, inference, astrophysics, kilonovae, gamma-ray bursts",
"author": "Thibeau Wouters",
"author_email": "thibeauwouters@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/27/6a/e9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40/fiestaem-0.0.1.tar.gz",
"platform": null,
"description": "# fiesta \ud83c\udf89\n\n`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x\n\n![fiesta logo](docs/fiesta_logo.jpeg)\n\n**NOTE:** `fiesta` is currently under development -- stay tuned!\n\n## Installation\n\npip installation is currently work in progress. Install from source by cloning this Github repository and running\n```\npip install -e .\n```\n\nNOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).\n\n## Training surrogate models\n\nTo train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`\n\n- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model. \n- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure. \n\n## Examples\n\n- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.\n- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.\n\n## Acknowledgements\n\nThe logo was created by [ideogram AI](https://ideogram.ai/). \n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Fast inference of electromagnetic signals with JAX",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/ThibeauWouters/fiestaEM"
},
"split_keywords": [
"sampling",
" inference",
" astrophysics",
" kilonovae",
" gamma-ray bursts"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "decd3f09b40dfe78ff56c8733bb8f75585485237890c952aaf71c7a7f00d04a7",
"md5": "3f444f0a9645f90e1a67fb9c9913dc4d",
"sha256": "8a837e033578695d7ba35312403ac98066586f32a8e1d2d67891fc288496a4fe"
},
"downloads": -1,
"filename": "fiestaEM-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3f444f0a9645f90e1a67fb9c9913dc4d",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 2730,
"upload_time": "2024-10-17T00:36:57",
"upload_time_iso_8601": "2024-10-17T00:36:57.106340Z",
"url": "https://files.pythonhosted.org/packages/de/cd/3f09b40dfe78ff56c8733bb8f75585485237890c952aaf71c7a7f00d04a7/fiestaEM-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "276ae9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40",
"md5": "1d05df5b3ece8c45a915f1d93e75e167",
"sha256": "6a684369159d51a8739d49f5abfdb5dd50e93abf8a083e0510854c97ecae2278"
},
"downloads": -1,
"filename": "fiestaem-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "1d05df5b3ece8c45a915f1d93e75e167",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 2836,
"upload_time": "2024-10-17T00:36:58",
"upload_time_iso_8601": "2024-10-17T00:36:58.283881Z",
"url": "https://files.pythonhosted.org/packages/27/6a/e9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40/fiestaem-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-10-17 00:36:58",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ThibeauWouters",
"github_project": "fiestaEM",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fiestaem"
}