fiestaEM


NamefiestaEM JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/ThibeauWouters/fiestaEM
SummaryFast inference of electromagnetic signals with JAX
upload_time2024-10-17 00:36:58
maintainerNone
docs_urlNone
authorThibeau Wouters
requires_python>=3.10
licenseMIT
keywords sampling inference astrophysics kilonovae gamma-ray bursts
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # fiesta 🎉

`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x

![fiesta logo](docs/fiesta_logo.jpeg)

**NOTE:** `fiesta` is currently under development -- stay tuned!

## Installation

pip installation is currently work in progress. Install from source by cloning this Github repository and running
```
pip install -e .
```

NOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).

## Training surrogate models

To train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`

- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model. 
- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure.  

## Examples

- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.
- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.

## Acknowledgements

The logo was created by [ideogram AI](https://ideogram.ai/). 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/ThibeauWouters/fiestaEM",
    "name": "fiestaEM",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": "sampling, inference, astrophysics, kilonovae, gamma-ray bursts",
    "author": "Thibeau Wouters",
    "author_email": "thibeauwouters@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/27/6a/e9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40/fiestaem-0.0.1.tar.gz",
    "platform": null,
    "description": "# fiesta \ud83c\udf89\n\n`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x\n\n![fiesta logo](docs/fiesta_logo.jpeg)\n\n**NOTE:** `fiesta` is currently under development -- stay tuned!\n\n## Installation\n\npip installation is currently work in progress. Install from source by cloning this Github repository and running\n```\npip install -e .\n```\n\nNOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).\n\n## Training surrogate models\n\nTo train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`\n\n- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model. \n- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure.  \n\n## Examples\n\n- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.\n- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.\n\n## Acknowledgements\n\nThe logo was created by [ideogram AI](https://ideogram.ai/). \n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Fast inference of electromagnetic signals with JAX",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/ThibeauWouters/fiestaEM"
    },
    "split_keywords": [
        "sampling",
        " inference",
        " astrophysics",
        " kilonovae",
        " gamma-ray bursts"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "decd3f09b40dfe78ff56c8733bb8f75585485237890c952aaf71c7a7f00d04a7",
                "md5": "3f444f0a9645f90e1a67fb9c9913dc4d",
                "sha256": "8a837e033578695d7ba35312403ac98066586f32a8e1d2d67891fc288496a4fe"
            },
            "downloads": -1,
            "filename": "fiestaEM-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3f444f0a9645f90e1a67fb9c9913dc4d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 2730,
            "upload_time": "2024-10-17T00:36:57",
            "upload_time_iso_8601": "2024-10-17T00:36:57.106340Z",
            "url": "https://files.pythonhosted.org/packages/de/cd/3f09b40dfe78ff56c8733bb8f75585485237890c952aaf71c7a7f00d04a7/fiestaEM-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "276ae9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40",
                "md5": "1d05df5b3ece8c45a915f1d93e75e167",
                "sha256": "6a684369159d51a8739d49f5abfdb5dd50e93abf8a083e0510854c97ecae2278"
            },
            "downloads": -1,
            "filename": "fiestaem-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1d05df5b3ece8c45a915f1d93e75e167",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 2836,
            "upload_time": "2024-10-17T00:36:58",
            "upload_time_iso_8601": "2024-10-17T00:36:58.283881Z",
            "url": "https://files.pythonhosted.org/packages/27/6a/e9cb2b2c5950963e4fbe324b4b3e0ca355d6cceecf5583ac81543ad38e40/fiestaem-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-10-17 00:36:58",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "ThibeauWouters",
    "github_project": "fiestaEM",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "fiestaem"
}
        
Elapsed time: 0.51495s