# fiesta 🎉
`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x
![fiesta logo](docs/fiesta_logo.jpeg)
**NOTE:** `fiesta` is currently under development -- stay tuned!
## Installation
pip installation is currently work in progress. Install from source by cloning this Github repository and running
```
pip install -e .
```
NOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).
## Training surrogate models
To train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`
- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model.
- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure.
## Examples
- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.
- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.
## Acknowledgements
The logo was created by [ideogram AI](https://ideogram.ai/).
Raw data
{
"_id": null,
"home_page": "https://github.com/ThibeauWouters/fiestaEM",
"name": "fiestaEM",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": "sampling, inference, astrophysics, kilonovae, gamma-ray bursts",
"author": "Thibeau Wouters",
"author_email": "thibeauwouters@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/83/e2/e59a4a04d0c9ead7d74e9d78467be6d0ec3ccad48c539b869a0b2dfb37fb/fiestaem-0.0.2.tar.gz",
"platform": null,
"description": "# fiesta \ud83c\udf89\n\n`fiesta`: **F**ast **I**nference of **E**lectromagnetic **S**ignals and **T**ransients with j**A**x\n\n![fiesta logo](docs/fiesta_logo.jpeg)\n\n**NOTE:** `fiesta` is currently under development -- stay tuned!\n\n## Installation\n\npip installation is currently work in progress. Install from source by cloning this Github repository and running\n```\npip install -e .\n```\n\nNOTE: This is using an older and custom version of `flowMC`. Install by cloning the `flowMC` version at [this fork](https://github.com/ThibeauWouters/flowMC/tree/fiesta) (branch `fiesta`).\n\n## Training surrogate models\n\nTo train your own surrogate models, have a look at some of the example scripts in the repository for inspiration, under `trained_models`\n\n- `train_Bu2019lm.py`: Example script showing how to train a surrogate model for the POSSIS `Bu2019lm` kilonova model. \n- `train_afterglowpy_tophat.py`: Example script showing how to train a surrogate model for `afterglowpy`, using a tophat jet structure. \n\n## Examples\n\n- `run_AT2017gfo_Bu2019lm.py`: Example where we infer the parameters of the AT2017gfo kilonova with the `Bu2019lm` model.\n- `run_GRB170817_tophat.py`: Example where we infer the parameters of the GRB170817 GRB with a surrogate model for `afterglowpy`'s tophat jet. **NOTE** This currently only uses one specific filter. The complete inference will be updated soon.\n\n## Acknowledgements\n\nThe logo was created by [ideogram AI](https://ideogram.ai/). \n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Fast inference of electromagnetic signals with JAX",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/ThibeauWouters/fiestaEM"
},
"split_keywords": [
"sampling",
" inference",
" astrophysics",
" kilonovae",
" gamma-ray bursts"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "806e21d7d039247a781fea45b1f8ad53c330e2a9a3269a5702c126d841176cea",
"md5": "0320719b316394275430999bca8b5737",
"sha256": "abf23e4bfe38bcc17ff3d0ea8c1d6d54be1e07a8b31b65dc26f44778d71dd6fd"
},
"downloads": -1,
"filename": "fiestaEM-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "0320719b316394275430999bca8b5737",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 2737,
"upload_time": "2024-12-19T17:09:12",
"upload_time_iso_8601": "2024-12-19T17:09:12.404087Z",
"url": "https://files.pythonhosted.org/packages/80/6e/21d7d039247a781fea45b1f8ad53c330e2a9a3269a5702c126d841176cea/fiestaEM-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "83e2e59a4a04d0c9ead7d74e9d78467be6d0ec3ccad48c539b869a0b2dfb37fb",
"md5": "27fa8a44762bf023589dfbfa92a09050",
"sha256": "a32ca8c9731eba1715809330be6f01b4b0110df10a602a5fbe855a7b8797a6be"
},
"downloads": -1,
"filename": "fiestaem-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "27fa8a44762bf023589dfbfa92a09050",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 2847,
"upload_time": "2024-12-19T17:09:13",
"upload_time_iso_8601": "2024-12-19T17:09:13.265309Z",
"url": "https://files.pythonhosted.org/packages/83/e2/e59a4a04d0c9ead7d74e9d78467be6d0ec3ccad48c539b869a0b2dfb37fb/fiestaem-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-19 17:09:13",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ThibeauWouters",
"github_project": "fiestaEM",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"lcname": "fiestaem"
}