figurestream


Namefigurestream JSON
Version 1.2.8 PyPI version JSON
download
home_page
SummaryA Matplotlib.Figure fork with real-time plot streaming features.
upload_time2023-08-08 17:23:53
maintainerYeison Cardona
docs_urlNone
authorYeison Cardona
requires_python>=3.8
licenseBSD-2-Clause
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Matplotlib-FigureStream

A backend for serve Matplotlib animations as web streams.

![GitHub top language](https://img.shields.io/github/languages/top/un-gcpds/matplotlib-figurestream?)
![PyPI - License](https://img.shields.io/pypi/l/figurestream?)
![PyPI](https://img.shields.io/pypi/v/figurestream?)
![PyPI - Status](https://img.shields.io/pypi/status/figurestream?)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/figurestream?)
![GitHub last commit](https://img.shields.io/github/last-commit/un-gcpds/matplotlib-figurestream?)
![CodeFactor Grade](https://img.shields.io/codefactor/grade/github/UN-GCPDS/matplotlib-figurestream?)
[![Documentation Status](https://readthedocs.org/projects/figurestream/badge/?version=latest)](https://figurestream.readthedocs.io/en/latest/?badge=latest)

## Instalation


```python
pip install figurestream
```

## Bare minimum

By default, the stream serves on http://localhost:5000


```python
# FigureStream replace any Figure object 
from figurestream import FigureStream

import numpy as np
from datetime import datetime

# FigureStream can be used like any Figure object
stream = FigureStream()
sub = stream.add_subplot(111)
x = np.linspace(0, 3, 1000)

# Update animation loop
while True:
    sub.clear()  # clear the canvas

    # ------------------------------------------------------------------------
    # Any plot operation 
    sub.set_title('FigureStream')
    sub.set_xlabel('Time [s]')
    sub.set_ylabel('Amplitude')
    sub.plot(x, np.sin(2 * np.pi * 2 * (x + datetime.now().timestamp())))
    sub.plot(x, np.sin(2 * np.pi * 0.5 * (x + datetime.now().timestamp())))
    # ------------------------------------------------------------------------
    
    stream.feed()  # push the frame into the server
```

For fast updates is recommended to use `set_data`, `set_ydata` and `set_xdata` instead of clear and draw again in each loop, also `FigureStream` can be implemented from a custom class.


```python
# FigureStream replace any Figure object
from figurestream import FigureStream

import numpy as np
from datetime import datetime


class FastAnimation(FigureStream):

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)

        axis = self.add_subplot(111)
        self.x = np.linspace(0, 3, 1000)
        
        # ------------------------------------------------------------------------
        # Single time plot configuration
        axis.set_title('FigureStream')
        axis.set_xlabel('Time [s]')
        axis.set_ylabel('Amplitude')

        axis.set_ylim(-1.2, 1.2)
        axis.set_xlim(0, 3)
        
        # Lines objects
        self.line1, *_ = axis.plot(self.x, np.zeros(self.x.size))
        self.line2, *_ = axis.plot(self.x, np.zeros(self.x.size))
        # ------------------------------------------------------------------------

        self.anim()

    def anim(self):
        # Update animation loop
        while True:
            # ------------------------------------------------------------------------
            # Update only the data values is faster than update all the plot
            self.line1.set_ydata(np.sin(2 * np.pi * 2 * (self.x + datetime.now().timestamp())))
            self.line2.set_ydata(np.sin(2 * np.pi * 0.5 * (self.x + datetime.now().timestamp())))
            # ------------------------------------------------------------------------
            
            self.feed()  # push the frame into the server


if __name__ == '__main__':
    FastAnimation()
```

## Set host, port and endpoint

If we want to serve the stream in a different place we can use the parameters `host`, `port` and `endpoint`, for example:


```python
FigureStream(host='0.0.0.0', port='5500', endpoint='figure.jpeg')
```

Now the stream will serve on http://localhost:5500/figure.jpeg and due the `0.0.0.0` host is accesible for any device on network.  
By default `host` is `localhost`, `port` is `5000` and endopoint is empty.

            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "figurestream",
    "maintainer": "Yeison Cardona",
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": "yencardonaal@unal.edu.co",
    "keywords": "",
    "author": "Yeison Cardona",
    "author_email": "yencardonaal@unal.edu.co",
    "download_url": "https://files.pythonhosted.org/packages/0b/a3/8f901392d9d918f05765e87986fea56353d53e08b2c1d5a1c92cc98e811f/figurestream-1.2.8.tar.gz",
    "platform": null,
    "description": "# Matplotlib-FigureStream\n\nA backend for serve Matplotlib animations as web streams.\n\n![GitHub top language](https://img.shields.io/github/languages/top/un-gcpds/matplotlib-figurestream?)\n![PyPI - License](https://img.shields.io/pypi/l/figurestream?)\n![PyPI](https://img.shields.io/pypi/v/figurestream?)\n![PyPI - Status](https://img.shields.io/pypi/status/figurestream?)\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/figurestream?)\n![GitHub last commit](https://img.shields.io/github/last-commit/un-gcpds/matplotlib-figurestream?)\n![CodeFactor Grade](https://img.shields.io/codefactor/grade/github/UN-GCPDS/matplotlib-figurestream?)\n[![Documentation Status](https://readthedocs.org/projects/figurestream/badge/?version=latest)](https://figurestream.readthedocs.io/en/latest/?badge=latest)\n\n## Instalation\n\n\n```python\npip install figurestream\n```\n\n## Bare minimum\n\nBy default, the stream serves on http://localhost:5000\n\n\n```python\n# FigureStream replace any Figure object \nfrom figurestream import FigureStream\n\nimport numpy as np\nfrom datetime import datetime\n\n# FigureStream can be used like any Figure object\nstream = FigureStream()\nsub = stream.add_subplot(111)\nx = np.linspace(0, 3, 1000)\n\n# Update animation loop\nwhile True:\n    sub.clear()  # clear the canvas\n\n    # ------------------------------------------------------------------------\n    # Any plot operation \n    sub.set_title('FigureStream')\n    sub.set_xlabel('Time [s]')\n    sub.set_ylabel('Amplitude')\n    sub.plot(x, np.sin(2 * np.pi * 2 * (x + datetime.now().timestamp())))\n    sub.plot(x, np.sin(2 * np.pi * 0.5 * (x + datetime.now().timestamp())))\n    # ------------------------------------------------------------------------\n    \n    stream.feed()  # push the frame into the server\n```\n\nFor fast updates is recommended to use `set_data`, `set_ydata` and `set_xdata` instead of clear and draw again in each loop, also `FigureStream` can be implemented from a custom class.\n\n\n```python\n# FigureStream replace any Figure object\nfrom figurestream import FigureStream\n\nimport numpy as np\nfrom datetime import datetime\n\n\nclass FastAnimation(FigureStream):\n\n    def __init__(self, *args, **kwargs):\n        super().__init__(*args, **kwargs)\n\n        axis = self.add_subplot(111)\n        self.x = np.linspace(0, 3, 1000)\n        \n        # ------------------------------------------------------------------------\n        # Single time plot configuration\n        axis.set_title('FigureStream')\n        axis.set_xlabel('Time [s]')\n        axis.set_ylabel('Amplitude')\n\n        axis.set_ylim(-1.2, 1.2)\n        axis.set_xlim(0, 3)\n        \n        # Lines objects\n        self.line1, *_ = axis.plot(self.x, np.zeros(self.x.size))\n        self.line2, *_ = axis.plot(self.x, np.zeros(self.x.size))\n        # ------------------------------------------------------------------------\n\n        self.anim()\n\n    def anim(self):\n        # Update animation loop\n        while True:\n            # ------------------------------------------------------------------------\n            # Update only the data values is faster than update all the plot\n            self.line1.set_ydata(np.sin(2 * np.pi * 2 * (self.x + datetime.now().timestamp())))\n            self.line2.set_ydata(np.sin(2 * np.pi * 0.5 * (self.x + datetime.now().timestamp())))\n            # ------------------------------------------------------------------------\n            \n            self.feed()  # push the frame into the server\n\n\nif __name__ == '__main__':\n    FastAnimation()\n```\n\n## Set host, port and endpoint\n\nIf we want to serve the stream in a different place we can use the parameters `host`, `port` and `endpoint`, for example:\n\n\n```python\nFigureStream(host='0.0.0.0', port='5500', endpoint='figure.jpeg')\n```\n\nNow the stream will serve on http://localhost:5500/figure.jpeg and due the `0.0.0.0` host is accesible for any device on network.  \nBy default `host` is `localhost`, `port` is `5000` and endopoint is empty.\n",
    "bugtrack_url": null,
    "license": "BSD-2-Clause",
    "summary": "A Matplotlib.Figure fork with real-time plot streaming features.",
    "version": "1.2.8",
    "project_urls": {
        "Download": "https://github.com/UN-GCPDS/matplotlib-figurestream"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "fb9ab342fed54825615302518aa2ac1865a2a7bba59cc864b3cd63a385680165",
                "md5": "43a9c3f74a24763cb22ed3bb5e47d68e",
                "sha256": "eb31838039aec45feb5c7919908092baad1a0b92034d2f8eb54b3653a3dfcf68"
            },
            "downloads": -1,
            "filename": "figurestream-1.2.8-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "43a9c3f74a24763cb22ed3bb5e47d68e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 6244,
            "upload_time": "2023-08-08T17:23:52",
            "upload_time_iso_8601": "2023-08-08T17:23:52.499568Z",
            "url": "https://files.pythonhosted.org/packages/fb/9a/b342fed54825615302518aa2ac1865a2a7bba59cc864b3cd63a385680165/figurestream-1.2.8-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0ba38f901392d9d918f05765e87986fea56353d53e08b2c1d5a1c92cc98e811f",
                "md5": "3a210a4bb67752a98a746abd6fcc3cc6",
                "sha256": "c9c358b7d1954cc9da4ac073ebec520f93bce9e3ff7e0b418d2fb50ada562c31"
            },
            "downloads": -1,
            "filename": "figurestream-1.2.8.tar.gz",
            "has_sig": false,
            "md5_digest": "3a210a4bb67752a98a746abd6fcc3cc6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 6355,
            "upload_time": "2023-08-08T17:23:53",
            "upload_time_iso_8601": "2023-08-08T17:23:53.623712Z",
            "url": "https://files.pythonhosted.org/packages/0b/a3/8f901392d9d918f05765e87986fea56353d53e08b2c1d5a1c92cc98e811f/figurestream-1.2.8.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-08 17:23:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "UN-GCPDS",
    "github_project": "matplotlib-figurestream",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "figurestream"
}
        
Elapsed time: 0.16556s