finance-datareader


Namefinance-datareader JSON
Version 0.9.96 PyPI version JSON
download
home_pageNone
SummaryFinancial data reader (price, stock list of markets)
upload_time2025-02-13 13:31:24
maintainerNone
docs_urlNone
authorNone
requires_python>=3.9
licenseMIT License
keywords data finance
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # FinanceDataReader
[FinanceData.KR](FinanceData.KR) Open Source Financial data reader 

**2018-2024 [FinanceData.KR]()**

# Overview
The FinanceDataReader is financial data reader(crawler) for finance. <br>
The main functions are as follows.

* KRX Stock listings (시장별 상장 종목 리스팅): 'KRX', 'KOSPI', 'KODAQ', 'KONEX'
* Global Stock Symbol listings(해외 거래소 상장 종목 리스팅): 'NASDAQ', 'NYSE', 'AMEX', 'S&P500', 'SSE'(상해), 'SZSE'(심천), 'HKEX'(홍콩), 'TSE'(도쿄)
* KRX delistings: 'KRX-DELISTING'(상장폐지종목), 'KRX-ADMINISTRATIVE' (관리종목), 'KRX-MARCAP'(시가총액)
* ETF Symbol listings: 'ETF/KR'
* Stock price(개별종목 가격 데이터): '005930'(Samsung), '091990'(Celltrion Healthcare) ...
* Stock price(해외 거래소 개별종목 가격 데이터): 'AAPL', 'AMZN', 'GOOG' ... (you can specify exchange(market) and symbol)
* Indexes: 'KS11'(코스피지수), 'KQ11'(코스닥지수), 'DJI'(다우존스지수), 'IXIC'(나스닥지수), 'US500'(S&P 500지수) ...
* Exchanges: 'USD/KRW', 'USD/EUR', 'CNY/KRW' ... (조합가능한 화폐별 환율 데이터 일자별 데이터)
* Cryptocurrency price data (암호화폐 가격 데이터): 'BTC/USD', 'ETH/KRW' ...

    
# Install

```bash
pip install finance-datareader
```

# Quick Start
지원하는 거래소: KRX(한국거래소), NYSE(뉴욕증권거래소), NASDAQ(나스닥), AMEX(아멕스), SSE(상해), SZSE(심천), HKEX(홍콩), TSE(도쿄)

```python

import FinanceDataReader as fdr

# KOSPI Index 코스피 지수 데이터 
df = fdr.DataReader('KS11', '2020') # 2020-01-01 ~ 현재
df = fdr.DataReader('KS11', '2022-01-01', '2022-12-31') # 2022-01-01 ~ 2022-12-31

# KRX Indices 국내 지수 데이터
df = fdr.DataReader('KS11') # KOSPI 지수 (KRX)
df = fdr.DataReader('KQ11') # KOSDAQ 지수 (KRX)
df = fdr.DataReader('KS200') # KOSPI 200 (KRX)

# US market Indices 미국 시장 지수 데이터
df = fdr.DataReader('DJI') # 다우존스 지수 (DJI - Dow Jones Industrial Average)
df = fdr.DataReader('IXIC') # 나스닥 종합지수 (IXIC - NASDAQ Composite)
df = fdr.DataReader('S&P500') # S&P500 지수 (NYSE)
df = fdr.DataReader('RUT') # 러셀2000 지수 (RUT - US Small Cap 2000)
df = fdr.DataReader('VIX') # VIX지수 (VIX - CBOE Volatility Index)

# Global Indices 글로벌 지수 데이터
df = fdr.DataReader('SSEC') # 상해 종합지수 Shanghai (SSEC -Shanghai Composite)
df = fdr.DataReader('HSI') # 항셍지수 (HSI - Hang Seng)
df = fdr.DataReader('N225') # 일본 닛케이지수 (N225 - Nikkei 225)
df = fdr.DataReader('FTSE') # 영국 FTSE100 (FTSE 100 - Financial Times Stock Exchange)
df = fdr.DataReader('FCHI') # 프랑스 FCHI 지수 (CAC 40 - CAC quarante)
df = fdr.DataReader('GDAXI') # 독일 닥스지수  (DAX30 - germany-30)

# KRX stock price 국내 시장 개별종목
df = fdr.DataReader('005930') # 삼성전자 전체 (1999년 ~ 현재)
df = fdr.DataReader('000660') # SK하이닉스 전체 (1999년 ~ 현재)
df = fdr.DataReader('068270') # 셀트리온 전체 (2004년 상장 ~ 현재)

# 여러 종목 종가(Close) 한번에
# 삼성전자(005930), SK하이닉스(000660), 기아(000270), 카카오(035720), KB금융(105560)
df = fdr.DataReader('005930,000660,000270,035720,105560', '2020') # 2020년 ~ 현재

# US stock price 미국 시장 개별종목
df = fdr.DataReader('AAPL', '2017') # Apple(AAPL), 2017-01-01 ~ 현재
df = fdr.DataReader('AMZN', '2017', '2019-12-31') # AMAZON(AMZN), 2017~2019 (3년)
df = fdr.DataReader('F', '1980-01-01', '2023-10-01') # Ford 자동차(F) (40년간)

# 여러종목 한번에 종가(Close) 데이터
df = fdr.DataReader('AAPL, TSLA, AMZN', '2020') # 애플, 테슬라, 아마존 (2020년 ~ 현재)

# 데이터 소스 지정하기
df = fdr.DataReader('KRX:000150', '2020-01-01') # 두산(000150) (한국거래소)
df = fdr.DataReader('NAVER:000150', '2020-01-01') # 두산(000150) (네이버 파이낸스)
df = fdr.DataReader('YAHOO:000150.KS', '2020-01-01') # 두산(000150) (야후 파이낸스)

# TSE (도쿄증권거래소)
df = fdr.DataReader('TSE:7203', '2020-01-01') # Toyota Motor Corp 토요타 자동차(7203)
df = fdr.DataReader('TSE:9984', '2020-01-01') # SoftBank Group Corp 소프트뱅크그룹(9984)

# HOSE (호치민증권거래소)
df = fdr.DataReader('HOSE:VCB', '2020-01-01') # 베트남 무역은행(VCB)
df = fdr.DataReader('HOSE:VIC') # Vingroup (JSC)

# 글로벌 동일한 종목코드 경우 거래소를 지정
df = fdr.DataReader('000150', '2020-01-01') # 두산:KRX 종목 (기본:네이버 파이낸스)
df = fdr.DataReader('KRX:000150', '2020-01-01') # 두산:KRX 종목 (한국거래소 데이터)
df = fdr.DataReader('SSE:000150', '2020-01-01') # SSE 380 Dividend Index (상하이 거래소)

# 상품 선물 가격 데이터
df = fdr.DataReader('CL=F') # WTI유 선물 Crude Oil (NYMEX)
df = fdr.DataReader('BZ=F') # 브렌트유 선물 Brent Oil (NYMEX)
df = fdr.DataReader('NG=F') # 천연가스 선물 (NYMEX)
df = fdr.DataReader('GC=F') # 금 선물 (COMEX)
df = fdr.DataReader('SI=F') # 은 선물 (COMEX)
df = fdr.DataReader('HG=F') # 구리 선물 (COMEX)

# 환율: 여러 조합 가능(지원 심볼: ['KRW', 'EUR', 'CNY', 'JPY', 'CHF'])
df = fdr.DataReader('USD/KRW') # 달러 원화
df = fdr.DataReader('USD/EUR') # 달러 유로화
df = fdr.DataReader('USD/CNY') # 달러 위엔화
df = fdr.DataReader('CNY/KRW') # 위엔화 원화
df = fdr.DataReader('EUR/CNY') # 유로화 위엔화

# 암호화폐 가격 데이터 (원화, 달러)
# (지원 심볼: ['BTC', 'ETH', 'USDT', 'BNB', 'USDC', 'XRP', 'BUSD', 'ADA', 'SOL', 'DOGE'])
df = fdr.DataReader('BTC/KRW') # 비트코인/원화
df = fdr.DataReader('ETH/KRW') # 이더리움/원화
df = fdr.DataReader('BTC/USD') # 비트코인/달러
df = fdr.DataReader('ETH/USD') # 이더리움/달러

# KRX delisting stock data 상장폐지 종목 전체 가격 데이터
df = fdr.DataReader('KRX-DELISTING:036360') # 3SOFT(036360)

# 미국 국채 채권 수익률
df = fdr.DataReader('US5YT')   # 5년 만기 미국국채 수익률
df = fdr.DataReader('US10YT') # 10년 만기 미국국채 수익률
df = fdr.DataReader('US30YT') # 30년 만기 미국국채 수익률

# 종목 리스팅 (종목수는 2022년 10월 25일 기준, 시장 규모 가늠 용도)
# KRX 상장회사(발행회사)목록 (가격 중심, 주식 종목) - 시가총액순
stocks = fdr.StockListing('KRX') # KRX: 2,663 종목(=코스피+코스닥+코넥스)
stocks = fdr.StockListing('KOSPI') # KOSPI: 940 종목
stocks = fdr.StockListing('KOSDAQ') # KOSDAQ: 1,597 종목
stocks = fdr.StockListing('KONEX') # KONEX: 126 종목

# KRX 전종목 목록 (설명 중심, 주식+펀드등 전종목)
stocks = fdr.StockListing('KRX-DESC') # 한국거래소: 7,632 종목
stocks = fdr.StockListing('KOSPI-DESC') # KOSPI: 5,897 종목
stocks = fdr.StockListing('KOSDAQ-DESC') # KOSDAQ: 1,609 종목
stocks = fdr.StockListing('KONEX-DESC') # KONEX: 126 종목

# KRX 특수 종목 리스팅 (상장폐지 종목, 관리종목)
stocks = fdr.StockListing('KRX-DELISTING') # 3천+ 종목 - 상장폐지 종목 전체
stocks = fdr.StockListing('KRX-ADMIN') # 50+ 종목 - KRX 관리종목

# US Market listings 미국 시장 거래소별 전종목 리스팅
stocks = fdr.StockListing('S&P500') # S&P500: 503 종목  
stocks = fdr.StockListing('NASDAQ') # 나스닥 (NASDAQ): 4천+ 종목
stocks = fdr.StockListing('NYSE') # 뉴욕증권거래소 (NYSE): 3천+ 종목

# Global Market listings 글로벌 시장 거래소별 전종목 리스팅
stocks = fdr.StockListing('SSE') # 상하이 증권거래소 (Shanghai Stock Exchange: SSE): 1천+ 종목
stocks = fdr.StockListing('SZSE') # 선전 증권거래소(Shenzhen Stock Exchange: SZSE): 1천+ 종목
stocks = fdr.StockListing('HKEX') # 홍콩 증권거래소(Hong Kong Exchange: HKEX): 2천5백+ 종목
stocks = fdr.StockListing('TSE') # 도쿄 증권거래소(Tokyo Stock Exchange: TSE): 3천9백+ 종목
stocks = fdr.StockListing('HOSE') # 호찌민 증권거래소(Ho Chi Minh City Stock Exchange: HOSE): 4백+ 종목

# KRX ETFs
etfs = fdr.StockListing('ETF/KR') # 한국 ETF 전종목

# FRED 데이터
df = fdr.DataReader('FRED:M2') #  M2 통화량
df = fdr.DataReader('FRED:NASDAQCOM') # NASDAQCOM 나스닥종합지수
df = fdr.DataReader('FRED:T10Y2Y') # 미국 장단기금리차 (1980년 ~)

# 달러 인덱스
df = fdr.DataReader('^NYICDX') # ICE U.S. Dollar Index (^NYICDX) 달러인덱스 (1980~현재)

# FRED 데이터 여러 항목 한번에 
df = fdr.DataReader('FRED:M2,HSN1F,NASDAQCOM')  # M2 통화량, HSN1F 주택판매지수, NASDAQCOM 나스닥종합지수

#  KRX지수및 지수 구 성종목
df = fdr.SnapDataReader('KRX/INDEX/LIST') # KRX 전체 지수목록

df = fdr.SnapDataReader('KRX/INDEX/STOCK/1001') # KOSPI 지수구성종목
df = fdr.SnapDataReader('KRX/INDEX/STOCK/1028') # 코스피 200
df = fdr.SnapDataReader('KRX/INDEX/STOCK/5106') # KRX ESG Leaders 150 테마 지수 구성종목
```

## 데이터 소스 지정
```python
# 지정하지 않은 경우 (NAVER에서 가져오며 2000년 이후 데이터)
fdr.DataReader('000100') # (기간 지정 하지 않은 경우) 
fdr.DataReader('000100', '2023') # 2023년 ~ 현재까지 가격 데이터
fdr.DataReader('000100', '2023', '2024') # 2023년 데이터

# KRX (2000년 이전 데이터 가능, 상세한 추가 필드)
fdr.DataReader('KRX:000100') # 1995-05-02 ~ 현재 (2년단위로 가져와  합쳐서 반환)
fdr.DataReader('KRX:000100', '2020') # 2020년 ~ 현재까지 가격 데이터
fdr.DataReader('KRX:000100', '1900') # 최대 데이터 (1995-05-02 ~ 현재까지)
fdr.DataReader('KRX:000100', '2023-09-23', '2024-12-31') # (기간 지정) 2년 단위로 가져와 병합

# NAVER (2000년 이후 데이터)
fdr.DataReader('NAVER:000100') # 2000년~현재 데이터
fdr.DataReader('NAVER:000100', '2023') # 2023년 ~ 현재까지 가격 데이터
fdr.DataReader('NAVER:000100', '2023', '2024') # 2023년 데이터

# YAHOO
fdr.DataReader('YAHOO:000100.KS') # 2000년 이후 데이터
fdr.DataReader('YAHOO:000100.KS', '2023') # 2023년 ~ 현재까지 가격 데이터
fdr.DataReader('YAHOO:000100.KS', '2023', '2024') # 2023년 데이터
```

## Using FinanceDataReader
* [Users-Guide](https://github.com/FinanceData/FinanceDataReader/wiki/Users-Guide)
* [Quick-Reference (Symbol List)](https://github.com/FinanceData/FinanceDataReader/wiki/Quick-Reference)

## Tutorials
* [FRED 주요 경기 선행 지표](https://financedata.notion.site/FRED-FinanceDataReader-bfb0779c50254b138cb96416583130b9?pvs=4)
* [여러 종목 가격을 한번에](https://financedata.notion.site/FinanceDataReader-d976a299889143519793bcc45e491a73?pvs=4)

## FinanceDataReader Notebooks
* [S&P500 가격 데이터 수집과 수익률 분석](https://nbviewer.jupyter.org/710b8f0a4bd9a8df91ae1be6c7e838b1) 
* [S&P500 팩터 데이터 수집과 분석](https://nbviewer.jupyter.org/35a1b0d5248bc9b09513e53be437ac42)

**2018-2024 [FinanceData.KR]()**

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "finance-datareader",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": "\"FinanceData.KR\" <plusjune@financedata.kr>",
    "keywords": "data, finance",
    "author": null,
    "author_email": "\"FinanceData.KR\" <plusjune@financedata.kr>",
    "download_url": null,
    "platform": null,
    "description": "# FinanceDataReader\n[FinanceData.KR](FinanceData.KR) Open Source Financial data reader \n\n**2018-2024 [FinanceData.KR]()**\n\n# Overview\nThe FinanceDataReader is financial data reader(crawler) for finance. <br>\nThe main functions are as follows.\n\n* KRX Stock listings (\uc2dc\uc7a5\ubcc4 \uc0c1\uc7a5 \uc885\ubaa9 \ub9ac\uc2a4\ud305): 'KRX', 'KOSPI', 'KODAQ', 'KONEX'\n* Global Stock Symbol listings(\ud574\uc678 \uac70\ub798\uc18c \uc0c1\uc7a5 \uc885\ubaa9 \ub9ac\uc2a4\ud305): 'NASDAQ', 'NYSE', 'AMEX', 'S&P500', 'SSE'(\uc0c1\ud574), 'SZSE'(\uc2ec\ucc9c), 'HKEX'(\ud64d\ucf69), 'TSE'(\ub3c4\ucfc4)\n* KRX delistings: 'KRX-DELISTING'(\uc0c1\uc7a5\ud3d0\uc9c0\uc885\ubaa9), 'KRX-ADMINISTRATIVE' (\uad00\ub9ac\uc885\ubaa9), 'KRX-MARCAP'(\uc2dc\uac00\ucd1d\uc561)\n* ETF Symbol listings: 'ETF/KR'\n* Stock price(\uac1c\ubcc4\uc885\ubaa9 \uac00\uaca9 \ub370\uc774\ud130): '005930'(Samsung), '091990'(Celltrion Healthcare) ...\n* Stock price(\ud574\uc678 \uac70\ub798\uc18c \uac1c\ubcc4\uc885\ubaa9 \uac00\uaca9 \ub370\uc774\ud130): 'AAPL', 'AMZN', 'GOOG' ... (you can specify exchange(market) and symbol)\n* Indexes: 'KS11'(\ucf54\uc2a4\ud53c\uc9c0\uc218), 'KQ11'(\ucf54\uc2a4\ub2e5\uc9c0\uc218), 'DJI'(\ub2e4\uc6b0\uc874\uc2a4\uc9c0\uc218), 'IXIC'(\ub098\uc2a4\ub2e5\uc9c0\uc218), 'US500'(S&P 500\uc9c0\uc218) ...\n* Exchanges: 'USD/KRW', 'USD/EUR', 'CNY/KRW' ... (\uc870\ud569\uac00\ub2a5\ud55c \ud654\ud3d0\ubcc4 \ud658\uc728 \ub370\uc774\ud130 \uc77c\uc790\ubcc4 \ub370\uc774\ud130)\n* Cryptocurrency price data (\uc554\ud638\ud654\ud3d0 \uac00\uaca9 \ub370\uc774\ud130): 'BTC/USD', 'ETH/KRW' ...\n\n    \n# Install\n\n```bash\npip install finance-datareader\n```\n\n# Quick Start\n\uc9c0\uc6d0\ud558\ub294 \uac70\ub798\uc18c: KRX(\ud55c\uad6d\uac70\ub798\uc18c), NYSE(\ub274\uc695\uc99d\uad8c\uac70\ub798\uc18c), NASDAQ(\ub098\uc2a4\ub2e5), AMEX(\uc544\uba55\uc2a4), SSE(\uc0c1\ud574), SZSE(\uc2ec\ucc9c), HKEX(\ud64d\ucf69), TSE(\ub3c4\ucfc4)\n\n```python\n\nimport FinanceDataReader as fdr\n\n# KOSPI Index \ucf54\uc2a4\ud53c \uc9c0\uc218 \ub370\uc774\ud130 \ndf = fdr.DataReader('KS11', '2020') # 2020-01-01 ~ \ud604\uc7ac\ndf = fdr.DataReader('KS11', '2022-01-01', '2022-12-31') # 2022-01-01 ~ 2022-12-31\n\n# KRX Indices \uad6d\ub0b4 \uc9c0\uc218 \ub370\uc774\ud130\ndf = fdr.DataReader('KS11') # KOSPI \uc9c0\uc218 (KRX)\ndf = fdr.DataReader('KQ11') # KOSDAQ \uc9c0\uc218 (KRX)\ndf = fdr.DataReader('KS200') # KOSPI 200 (KRX)\n\n# US market Indices \ubbf8\uad6d \uc2dc\uc7a5 \uc9c0\uc218 \ub370\uc774\ud130\ndf = fdr.DataReader('DJI') # \ub2e4\uc6b0\uc874\uc2a4 \uc9c0\uc218 (DJI - Dow Jones Industrial Average)\ndf = fdr.DataReader('IXIC') # \ub098\uc2a4\ub2e5 \uc885\ud569\uc9c0\uc218 (IXIC - NASDAQ Composite)\ndf = fdr.DataReader('S&P500') # S&P500 \uc9c0\uc218 (NYSE)\ndf = fdr.DataReader('RUT') # \ub7ec\uc1402000 \uc9c0\uc218 (RUT - US Small Cap 2000)\ndf = fdr.DataReader('VIX') # VIX\uc9c0\uc218 (VIX - CBOE Volatility Index)\n\n# Global Indices \uae00\ub85c\ubc8c \uc9c0\uc218 \ub370\uc774\ud130\ndf = fdr.DataReader('SSEC') # \uc0c1\ud574 \uc885\ud569\uc9c0\uc218 Shanghai (SSEC -Shanghai Composite)\ndf = fdr.DataReader('HSI') # \ud56d\uc14d\uc9c0\uc218 (HSI - Hang Seng)\ndf = fdr.DataReader('N225') # \uc77c\ubcf8 \ub2db\ucf00\uc774\uc9c0\uc218 (N225 - Nikkei 225)\ndf = fdr.DataReader('FTSE') # \uc601\uad6d FTSE100 (FTSE 100 - Financial Times Stock Exchange)\ndf = fdr.DataReader('FCHI') # \ud504\ub791\uc2a4 FCHI \uc9c0\uc218 (CAC 40 - CAC quarante)\ndf = fdr.DataReader('GDAXI') # \ub3c5\uc77c \ub2e5\uc2a4\uc9c0\uc218  (DAX30 - germany-30)\n\n# KRX stock price \uad6d\ub0b4 \uc2dc\uc7a5 \uac1c\ubcc4\uc885\ubaa9\ndf = fdr.DataReader('005930') # \uc0bc\uc131\uc804\uc790 \uc804\uccb4 (1999\ub144 ~ \ud604\uc7ac)\ndf = fdr.DataReader('000660') # SK\ud558\uc774\ub2c9\uc2a4 \uc804\uccb4 (1999\ub144 ~ \ud604\uc7ac)\ndf = fdr.DataReader('068270') # \uc140\ud2b8\ub9ac\uc628 \uc804\uccb4 (2004\ub144 \uc0c1\uc7a5 ~ \ud604\uc7ac)\n\n# \uc5ec\ub7ec \uc885\ubaa9 \uc885\uac00(Close) \ud55c\ubc88\uc5d0\n# \uc0bc\uc131\uc804\uc790(005930), SK\ud558\uc774\ub2c9\uc2a4(000660), \uae30\uc544(000270), \uce74\uce74\uc624(035720), KB\uae08\uc735(105560)\ndf = fdr.DataReader('005930,000660,000270,035720,105560', '2020') # 2020\ub144 ~ \ud604\uc7ac\n\n# US stock price \ubbf8\uad6d \uc2dc\uc7a5 \uac1c\ubcc4\uc885\ubaa9\ndf = fdr.DataReader('AAPL', '2017') # Apple(AAPL), 2017-01-01 ~ \ud604\uc7ac\ndf = fdr.DataReader('AMZN', '2017', '2019-12-31') # AMAZON(AMZN), 2017~2019 (3\ub144)\ndf = fdr.DataReader('F', '1980-01-01', '2023-10-01') # Ford \uc790\ub3d9\ucc28(F) (40\ub144\uac04)\n\n# \uc5ec\ub7ec\uc885\ubaa9 \ud55c\ubc88\uc5d0 \uc885\uac00(Close) \ub370\uc774\ud130\ndf = fdr.DataReader('AAPL, TSLA, AMZN', '2020') # \uc560\ud50c, \ud14c\uc2ac\ub77c, \uc544\ub9c8\uc874 (2020\ub144 ~ \ud604\uc7ac)\n\n# \ub370\uc774\ud130 \uc18c\uc2a4 \uc9c0\uc815\ud558\uae30\ndf = fdr.DataReader('KRX:000150', '2020-01-01') # \ub450\uc0b0(000150) (\ud55c\uad6d\uac70\ub798\uc18c)\ndf = fdr.DataReader('NAVER:000150', '2020-01-01') # \ub450\uc0b0(000150) (\ub124\uc774\ubc84 \ud30c\uc774\ub0b8\uc2a4)\ndf = fdr.DataReader('YAHOO:000150.KS', '2020-01-01') # \ub450\uc0b0(000150) (\uc57c\ud6c4 \ud30c\uc774\ub0b8\uc2a4)\n\n# TSE (\ub3c4\ucfc4\uc99d\uad8c\uac70\ub798\uc18c)\ndf = fdr.DataReader('TSE:7203', '2020-01-01') # Toyota Motor Corp \ud1a0\uc694\ud0c0 \uc790\ub3d9\ucc28(7203)\ndf = fdr.DataReader('TSE:9984', '2020-01-01') # SoftBank Group Corp \uc18c\ud504\ud2b8\ubc45\ud06c\uadf8\ub8f9(9984)\n\n# HOSE (\ud638\uce58\ubbfc\uc99d\uad8c\uac70\ub798\uc18c)\ndf = fdr.DataReader('HOSE:VCB', '2020-01-01') # \ubca0\ud2b8\ub0a8 \ubb34\uc5ed\uc740\ud589(VCB)\ndf = fdr.DataReader('HOSE:VIC') # Vingroup (JSC)\n\n# \uae00\ub85c\ubc8c \ub3d9\uc77c\ud55c \uc885\ubaa9\ucf54\ub4dc \uacbd\uc6b0 \uac70\ub798\uc18c\ub97c \uc9c0\uc815\ndf = fdr.DataReader('000150', '2020-01-01') # \ub450\uc0b0:KRX \uc885\ubaa9 (\uae30\ubcf8:\ub124\uc774\ubc84 \ud30c\uc774\ub0b8\uc2a4)\ndf = fdr.DataReader('KRX:000150', '2020-01-01') # \ub450\uc0b0:KRX \uc885\ubaa9 (\ud55c\uad6d\uac70\ub798\uc18c \ub370\uc774\ud130)\ndf = fdr.DataReader('SSE:000150', '2020-01-01') # SSE 380 Dividend Index (\uc0c1\ud558\uc774 \uac70\ub798\uc18c)\n\n# \uc0c1\ud488 \uc120\ubb3c \uac00\uaca9 \ub370\uc774\ud130\ndf = fdr.DataReader('CL=F') # WTI\uc720 \uc120\ubb3c Crude Oil (NYMEX)\ndf = fdr.DataReader('BZ=F') # \ube0c\ub80c\ud2b8\uc720 \uc120\ubb3c Brent Oil (NYMEX)\ndf = fdr.DataReader('NG=F') # \ucc9c\uc5f0\uac00\uc2a4 \uc120\ubb3c (NYMEX)\ndf = fdr.DataReader('GC=F') # \uae08 \uc120\ubb3c (COMEX)\ndf = fdr.DataReader('SI=F') # \uc740 \uc120\ubb3c (COMEX)\ndf = fdr.DataReader('HG=F') # \uad6c\ub9ac \uc120\ubb3c (COMEX)\n\n# \ud658\uc728: \uc5ec\ub7ec \uc870\ud569 \uac00\ub2a5(\uc9c0\uc6d0 \uc2ec\ubcfc: ['KRW', 'EUR', 'CNY', 'JPY', 'CHF'])\ndf = fdr.DataReader('USD/KRW') # \ub2ec\ub7ec \uc6d0\ud654\ndf = fdr.DataReader('USD/EUR') # \ub2ec\ub7ec \uc720\ub85c\ud654\ndf = fdr.DataReader('USD/CNY') # \ub2ec\ub7ec \uc704\uc5d4\ud654\ndf = fdr.DataReader('CNY/KRW') # \uc704\uc5d4\ud654 \uc6d0\ud654\ndf = fdr.DataReader('EUR/CNY') # \uc720\ub85c\ud654 \uc704\uc5d4\ud654\n\n# \uc554\ud638\ud654\ud3d0 \uac00\uaca9 \ub370\uc774\ud130 (\uc6d0\ud654, \ub2ec\ub7ec)\n# (\uc9c0\uc6d0 \uc2ec\ubcfc: ['BTC', 'ETH', 'USDT', 'BNB', 'USDC', 'XRP', 'BUSD', 'ADA', 'SOL', 'DOGE'])\ndf = fdr.DataReader('BTC/KRW') # \ube44\ud2b8\ucf54\uc778/\uc6d0\ud654\ndf = fdr.DataReader('ETH/KRW') # \uc774\ub354\ub9ac\uc6c0/\uc6d0\ud654\ndf = fdr.DataReader('BTC/USD') # \ube44\ud2b8\ucf54\uc778/\ub2ec\ub7ec\ndf = fdr.DataReader('ETH/USD') # \uc774\ub354\ub9ac\uc6c0/\ub2ec\ub7ec\n\n# KRX delisting stock data \uc0c1\uc7a5\ud3d0\uc9c0 \uc885\ubaa9 \uc804\uccb4 \uac00\uaca9 \ub370\uc774\ud130\ndf = fdr.DataReader('KRX-DELISTING:036360') # 3SOFT(036360)\n\n# \ubbf8\uad6d \uad6d\ucc44 \ucc44\uad8c \uc218\uc775\ub960\ndf = fdr.DataReader('US5YT')   # 5\ub144 \ub9cc\uae30 \ubbf8\uad6d\uad6d\ucc44 \uc218\uc775\ub960\ndf = fdr.DataReader('US10YT') # 10\ub144 \ub9cc\uae30 \ubbf8\uad6d\uad6d\ucc44 \uc218\uc775\ub960\ndf = fdr.DataReader('US30YT') # 30\ub144 \ub9cc\uae30 \ubbf8\uad6d\uad6d\ucc44 \uc218\uc775\ub960\n\n# \uc885\ubaa9 \ub9ac\uc2a4\ud305 (\uc885\ubaa9\uc218\ub294 2022\ub144 10\uc6d4 25\uc77c \uae30\uc900, \uc2dc\uc7a5 \uaddc\ubaa8 \uac00\ub2a0 \uc6a9\ub3c4)\n# KRX \uc0c1\uc7a5\ud68c\uc0ac(\ubc1c\ud589\ud68c\uc0ac)\ubaa9\ub85d (\uac00\uaca9 \uc911\uc2ec, \uc8fc\uc2dd \uc885\ubaa9) - \uc2dc\uac00\ucd1d\uc561\uc21c\nstocks = fdr.StockListing('KRX') # KRX: 2,663 \uc885\ubaa9(=\ucf54\uc2a4\ud53c+\ucf54\uc2a4\ub2e5+\ucf54\ub125\uc2a4)\nstocks = fdr.StockListing('KOSPI') # KOSPI: 940 \uc885\ubaa9\nstocks = fdr.StockListing('KOSDAQ') # KOSDAQ: 1,597 \uc885\ubaa9\nstocks = fdr.StockListing('KONEX') # KONEX: 126 \uc885\ubaa9\n\n# KRX \uc804\uc885\ubaa9 \ubaa9\ub85d (\uc124\uba85 \uc911\uc2ec, \uc8fc\uc2dd+\ud380\ub4dc\ub4f1 \uc804\uc885\ubaa9)\nstocks = fdr.StockListing('KRX-DESC') # \ud55c\uad6d\uac70\ub798\uc18c: 7,632 \uc885\ubaa9\nstocks = fdr.StockListing('KOSPI-DESC') # KOSPI: 5,897 \uc885\ubaa9\nstocks = fdr.StockListing('KOSDAQ-DESC') # KOSDAQ: 1,609 \uc885\ubaa9\nstocks = fdr.StockListing('KONEX-DESC') # KONEX: 126 \uc885\ubaa9\n\n# KRX \ud2b9\uc218 \uc885\ubaa9 \ub9ac\uc2a4\ud305 (\uc0c1\uc7a5\ud3d0\uc9c0 \uc885\ubaa9, \uad00\ub9ac\uc885\ubaa9)\nstocks = fdr.StockListing('KRX-DELISTING') # 3\ucc9c+ \uc885\ubaa9 - \uc0c1\uc7a5\ud3d0\uc9c0 \uc885\ubaa9 \uc804\uccb4\nstocks = fdr.StockListing('KRX-ADMIN') # 50+ \uc885\ubaa9 - KRX \uad00\ub9ac\uc885\ubaa9\n\n# US Market listings \ubbf8\uad6d \uc2dc\uc7a5 \uac70\ub798\uc18c\ubcc4 \uc804\uc885\ubaa9 \ub9ac\uc2a4\ud305\nstocks = fdr.StockListing('S&P500') # S&P500: 503 \uc885\ubaa9  \nstocks = fdr.StockListing('NASDAQ') # \ub098\uc2a4\ub2e5 (NASDAQ): 4\ucc9c+ \uc885\ubaa9\nstocks = fdr.StockListing('NYSE') # \ub274\uc695\uc99d\uad8c\uac70\ub798\uc18c (NYSE): 3\ucc9c+ \uc885\ubaa9\n\n# Global Market listings \uae00\ub85c\ubc8c \uc2dc\uc7a5 \uac70\ub798\uc18c\ubcc4 \uc804\uc885\ubaa9 \ub9ac\uc2a4\ud305\nstocks = fdr.StockListing('SSE') # \uc0c1\ud558\uc774 \uc99d\uad8c\uac70\ub798\uc18c (Shanghai Stock Exchange: SSE): 1\ucc9c+ \uc885\ubaa9\nstocks = fdr.StockListing('SZSE') # \uc120\uc804 \uc99d\uad8c\uac70\ub798\uc18c(Shenzhen Stock Exchange: SZSE): 1\ucc9c+ \uc885\ubaa9\nstocks = fdr.StockListing('HKEX') # \ud64d\ucf69 \uc99d\uad8c\uac70\ub798\uc18c(Hong Kong Exchange: HKEX): 2\ucc9c5\ubc31+ \uc885\ubaa9\nstocks = fdr.StockListing('TSE') # \ub3c4\ucfc4 \uc99d\uad8c\uac70\ub798\uc18c(Tokyo Stock Exchange: TSE): 3\ucc9c9\ubc31+ \uc885\ubaa9\nstocks = fdr.StockListing('HOSE') # \ud638\ucc0c\ubbfc \uc99d\uad8c\uac70\ub798\uc18c(Ho Chi Minh City Stock Exchange: HOSE): 4\ubc31+ \uc885\ubaa9\n\n# KRX ETFs\netfs = fdr.StockListing('ETF/KR') # \ud55c\uad6d ETF \uc804\uc885\ubaa9\n\n# FRED \ub370\uc774\ud130\ndf = fdr.DataReader('FRED:M2') #  M2 \ud1b5\ud654\ub7c9\ndf = fdr.DataReader('FRED:NASDAQCOM') # NASDAQCOM \ub098\uc2a4\ub2e5\uc885\ud569\uc9c0\uc218\ndf = fdr.DataReader('FRED:T10Y2Y') # \ubbf8\uad6d \uc7a5\ub2e8\uae30\uae08\ub9ac\ucc28 (1980\ub144 ~)\n\n# \ub2ec\ub7ec \uc778\ub371\uc2a4\ndf = fdr.DataReader('^NYICDX') # ICE U.S. Dollar Index (^NYICDX) \ub2ec\ub7ec\uc778\ub371\uc2a4 (1980~\ud604\uc7ac)\n\n# FRED \ub370\uc774\ud130 \uc5ec\ub7ec \ud56d\ubaa9 \ud55c\ubc88\uc5d0 \ndf = fdr.DataReader('FRED:M2,HSN1F,NASDAQCOM')  # M2 \ud1b5\ud654\ub7c9, HSN1F \uc8fc\ud0dd\ud310\ub9e4\uc9c0\uc218, NASDAQCOM \ub098\uc2a4\ub2e5\uc885\ud569\uc9c0\uc218\n\n#  KRX\uc9c0\uc218\ubc0f \uc9c0\uc218 \uad6c \uc131\uc885\ubaa9\ndf = fdr.SnapDataReader('KRX/INDEX/LIST') # KRX \uc804\uccb4 \uc9c0\uc218\ubaa9\ub85d\n\ndf = fdr.SnapDataReader('KRX/INDEX/STOCK/1001') # KOSPI \uc9c0\uc218\uad6c\uc131\uc885\ubaa9\ndf = fdr.SnapDataReader('KRX/INDEX/STOCK/1028') # \ucf54\uc2a4\ud53c 200\ndf = fdr.SnapDataReader('KRX/INDEX/STOCK/5106') # KRX ESG Leaders 150 \ud14c\ub9c8 \uc9c0\uc218 \uad6c\uc131\uc885\ubaa9\n```\n\n## \ub370\uc774\ud130 \uc18c\uc2a4 \uc9c0\uc815\n```python\n# \uc9c0\uc815\ud558\uc9c0 \uc54a\uc740 \uacbd\uc6b0 (NAVER\uc5d0\uc11c \uac00\uc838\uc624\uba70 2000\ub144 \uc774\ud6c4 \ub370\uc774\ud130)\nfdr.DataReader('000100') # (\uae30\uac04 \uc9c0\uc815 \ud558\uc9c0 \uc54a\uc740 \uacbd\uc6b0) \nfdr.DataReader('000100', '2023') # 2023\ub144 ~ \ud604\uc7ac\uae4c\uc9c0 \uac00\uaca9 \ub370\uc774\ud130\nfdr.DataReader('000100', '2023', '2024') # 2023\ub144 \ub370\uc774\ud130\n\n# KRX (2000\ub144 \uc774\uc804 \ub370\uc774\ud130 \uac00\ub2a5, \uc0c1\uc138\ud55c \ucd94\uac00 \ud544\ub4dc)\nfdr.DataReader('KRX:000100') # 1995-05-02 ~ \ud604\uc7ac (2\ub144\ub2e8\uc704\ub85c \uac00\uc838\uc640  \ud569\uccd0\uc11c \ubc18\ud658)\nfdr.DataReader('KRX:000100', '2020') # 2020\ub144 ~ \ud604\uc7ac\uae4c\uc9c0 \uac00\uaca9 \ub370\uc774\ud130\nfdr.DataReader('KRX:000100', '1900') # \ucd5c\ub300 \ub370\uc774\ud130 (1995-05-02 ~ \ud604\uc7ac\uae4c\uc9c0)\nfdr.DataReader('KRX:000100', '2023-09-23', '2024-12-31') # (\uae30\uac04 \uc9c0\uc815) 2\ub144 \ub2e8\uc704\ub85c \uac00\uc838\uc640 \ubcd1\ud569\n\n# NAVER (2000\ub144 \uc774\ud6c4 \ub370\uc774\ud130)\nfdr.DataReader('NAVER:000100') # 2000\ub144~\ud604\uc7ac \ub370\uc774\ud130\nfdr.DataReader('NAVER:000100', '2023') # 2023\ub144 ~ \ud604\uc7ac\uae4c\uc9c0 \uac00\uaca9 \ub370\uc774\ud130\nfdr.DataReader('NAVER:000100', '2023', '2024') # 2023\ub144 \ub370\uc774\ud130\n\n# YAHOO\nfdr.DataReader('YAHOO:000100.KS') # 2000\ub144 \uc774\ud6c4 \ub370\uc774\ud130\nfdr.DataReader('YAHOO:000100.KS', '2023') # 2023\ub144 ~ \ud604\uc7ac\uae4c\uc9c0 \uac00\uaca9 \ub370\uc774\ud130\nfdr.DataReader('YAHOO:000100.KS', '2023', '2024') # 2023\ub144 \ub370\uc774\ud130\n```\n\n## Using FinanceDataReader\n* [Users-Guide](https://github.com/FinanceData/FinanceDataReader/wiki/Users-Guide)\n* [Quick-Reference (Symbol List)](https://github.com/FinanceData/FinanceDataReader/wiki/Quick-Reference)\n\n## Tutorials\n* [FRED \uc8fc\uc694 \uacbd\uae30 \uc120\ud589 \uc9c0\ud45c](https://financedata.notion.site/FRED-FinanceDataReader-bfb0779c50254b138cb96416583130b9?pvs=4)\n* [\uc5ec\ub7ec \uc885\ubaa9 \uac00\uaca9\uc744 \ud55c\ubc88\uc5d0](https://financedata.notion.site/FinanceDataReader-d976a299889143519793bcc45e491a73?pvs=4)\n\n## FinanceDataReader Notebooks\n* [S&P500 \uac00\uaca9 \ub370\uc774\ud130 \uc218\uc9d1\uacfc \uc218\uc775\ub960 \ubd84\uc11d](https://nbviewer.jupyter.org/710b8f0a4bd9a8df91ae1be6c7e838b1) \n* [S&P500 \ud329\ud130 \ub370\uc774\ud130 \uc218\uc9d1\uacfc \ubd84\uc11d](https://nbviewer.jupyter.org/35a1b0d5248bc9b09513e53be437ac42)\n\n**2018-2024 [FinanceData.KR]()**\n",
    "bugtrack_url": null,
    "license": "MIT License",
    "summary": "Financial data reader (price, stock list of markets)",
    "version": "0.9.96",
    "project_urls": {
        "Repository": "https://github.com/financedata/financedatareader"
    },
    "split_keywords": [
        "data",
        " finance"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "f1a3ef73e35c92b457d6cb501d4176ce580a87c8745febaedf1bafe20cff26cc",
                "md5": "2b8c5db48d8262c40a9ee4867fcd6bbc",
                "sha256": "c0e2c420932a05187042a25229e86bd312da162b5cd1f5e33990636071c3725c"
            },
            "downloads": -1,
            "filename": "finance_datareader-0.9.96-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2b8c5db48d8262c40a9ee4867fcd6bbc",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 48217,
            "upload_time": "2025-02-13T13:31:24",
            "upload_time_iso_8601": "2025-02-13T13:31:24.800982Z",
            "url": "https://files.pythonhosted.org/packages/f1/a3/ef73e35c92b457d6cb501d4176ce580a87c8745febaedf1bafe20cff26cc/finance_datareader-0.9.96-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-13 13:31:24",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "financedata",
    "github_project": "financedatareader",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "finance-datareader"
}
        
Elapsed time: 0.42591s